
wiRed Panda
A Didactic Purpose Software for Simulating Digital Circuits

Davi M. Morales, Lucas S. Lellis, Rodrigo T. Alves,
Lucas A. R. Pinheiro, Fábio A. M. Cappabianco

1Instituto de Ciência e Tecnologia – Universidade Federal de São Paulo (UNIFESP)
São José dos Campos, SP – Brasil

Abstract. This paper presents a didactic software for editing and real-time sim-
ulation of digital circuits. The wiRed Panda is a open and free tool, developed
to assist in the teaching of digital logic, also offering unprecedented function-
ality to generate code compatible with the Arduino . The software was used in
digital logic classes with good approval ratings by the students, who considered
the wiRed Panda as intuitive and practical.

1. Metadata

Version described in the paper: 2.1
License: GPL 3.0
Link to source code repository: https://github.com/GIBIS-UNIFESP/
wiRedPanda/releases/tag/2.1
Link to project website: http://gibis-unifesp.github.io/wiRedPanda/
Link to communication channel: wiredpandaunifesp@gmail.com
Programming languages utilized: C++
Dependencies: Qt 5.6+
Operating systems compatible: Ubuntu 12.04 or later, Windows 7 or later.
List of contributors: Davi Morales, Lucas Lellis, Rodrigo Torres, Lucas A. R. Pinheiro,
André Leiniö, Daniel Renato, Guilherme Costa, Gustavo Oliveira, Héctor Castelli, Jimy
Suenaga, Johnny Michael, Lucas Shinoda, Rodrigo Ramires, Thales Koba.

2. Introduction

The discipline of digital logics is one of the bases in the curriculum of professionals in the
areas of informatics and information technologies. Given its importance, it is essential to
offer courses of that discipline with the most innovative and practical resources, including
digital circuit simulators.

The use of didactic tools, like digital circuit simulators, in the digital circuits class
is important to give to the students the opportunity to use their creativity and improve their
logic thinking, followed by challenges that will encourage their curiosity and provide a
deeper understanding about the behavior of digital circuits.

Currently, there are a few softwares used for the implementation of digi-
tal circuits, each of them with its own features. Some of them such as Quartus
II [Ciletti and Mano 2007] are proprietary, despite stable and reliable, require a huge
amount of disk to be installed and lack clarity in the user interface, demanding a very
high effort from beginners, and does not have support to real-time simulation of logic

https://github.com/GIBIS-UNIFESP/wiRedPanda/releases/tag/2.1
https://github.com/GIBIS-UNIFESP/wiRedPanda/releases/tag/2.1
http://gibis-unifesp.github.io/wiRedPanda/
mailto:wiredpandaunifesp@gmail.com


circuits. Also, some of them, like Logicly[Tynjala ], are stable, easy to use and powerful,
but not free.

Finally, there are softwares like Atanua[Komppa ], that are powerful and free,
with full support to real-time simulation of complex circuits, but are highly unstable and
lacks periodic support. From this perspective, we see that there are no fully appropriate
programs for educational use and which would encourage enthusiasts to go deeper in the
area.

We propose a novel multi platform software called wiRed Panda to fill this gap,
which is a didactic and intuitive platform that can be successfully used to teach digital
logic, allowing the implementation of virtually any digital circuit. The software is free
and open source, available for any students, teachers, professors, or enthusiasts. wiRed
Panda was developed in a relatively short period of time, with a reduced team composed of
one professor and four students, small contributions and suggestions from the community,
and with almost no financial support.

3. Frameworks Presentation

The software was implemented using Qt development platform1. Qt offers support for
the development of multiplataform graphical applications, with a variety of out of the
box containers which follow well defined project patterns[Ezust and Ezust 2006] such as
widgets, auto translation service, scenes and graphical items, among other essential tools.
Qt counts with a very large world wide community, which is ready to help solving bugs
and providing solutions by means of forums and open projects. QNodesEditor is one of
such open projects, used for the development of wiRed Panda. It allows the creation of a
graphical interface composed of nodes that may be linked by flexible wires2.

Other free softwares like Inkscape were essential for the design of icons and im-
ages of the interface used by wiRed Panda3 The usage of simple, clean, and meaningful
icons to access menu options and to represent logic circuit elements is among the key
factors for the software to have a better usability. The visual identity adopted by wiRed
Panda was chosen to offer an appealing experience to the users and, at the same time, to
be practical during circuit development.

3.1. Software Architecture

The most important classes in this software are the ones related to the digital circuit rep-
resentation. Each input (e.g. push button), output (e.g. led), logic gate, or memory (e.g.
D flip-flop) is a graphic element, which has one or more input and output ports. One el-
ement can be linked to another, generating connections. Connections are always created
between an input and an output port. These concepts are used for circuit implementation
in the user interface and for signal propagation during its simulation.

1Qt is a toolkit for the design of applications written in C++, and have an extensive graphical user
interface framework. Available at https://www.qt.io/. Accessed: 2016-06-23.

2The source code and description of QNodesEditor is available athttp://algoholic.eu/
qnodeseditor-qt-nodesports-based-data-processing-flow-editor/ . Accessed:
2016-06-23.

3Inkscape is a professional vector graphics editor, available at https://inkscape.org/pt/. Ac-
cessed: 2016-06-23.

https://www.qt.io/
http://algoholic.eu/qnodeseditor-qt-nodesports-based-data-processing-flow-editor/
http://algoholic.eu/qnodeseditor-qt-nodesports-based-data-processing-flow-editor/
https://inkscape.org/pt/


This relationship is described in Figure 1, in which the ‘GraphicElement’ class
represents the elements (i.e. logic gates, inputs, outputs, and memory), the ‘QNEPort’
class represents their input and output ports, and the class ‘QNEConnection’ represents
the wires or connections.

The ‘GraphicElement’ class is an abstract representation which is generalized as
logic gates, inputs, outputs, and memories. Classes ‘And’, ‘Or’, ‘InputButton’, and ‘Led’
are samples of possible generalizations of ‘GraphicElement’, which contain a description
of their respective behavior and appearance.

Figure 1. UML diagram of the relationship between the classes that compose the
logic circuit’s representation.

3.2. Simulation Algorithm
The algorithm for the simulation of sequential and combinational circuits runs on a di-
rected graph in which the vertices are logic gates and the arcs are wires connecting their
input and output ports. There is a distinct logic for each gate which simulates its opera-
tion, that is, determining how signals should be propagated from its inputs to the outputs.

The computation of signal values follows a depth-first propagation strategy. As
each node is reached, it is inserted into a forest (an acyclic graph that is not necessarily
connected). According to [Bondy and Murty 2008], whenever a vertex inside a tree (or
forest) is reached again in a depth-first search by means of a new edge, it means that we
should not include this last edge into the forest, since it is a back-edge, that otherwise
would produce a cycle. The vertices that do not reach other non-visited vertices during
the propagation are marked as leaves.

Given the final forest, all gates are ordered from leaves to the roots, generating the
order in which the signal propagation should be performed. Note that the same order is
used to output Arduino code, which is discussed in Section 3.3.

As an example, the circuit described in Figure 2 is a D-Latch, a sequential circuit.
This means that the status of the output of some logic gates are propagated back in the
circuit and used in the next iteration. This same circuit is described by a graph representa-
tion in Figure 3, which is a directed graph with a loop between the vertices f and g. In this



example, the simulation of the behavior of the circuit propagates signals from the input
buttons to the output leds. One possible order of the simulation is {a, c, b, d, e, f, g, h, i},
and the output value of the ‘nand’ element g will be used by f in the next iteration.

Figure 2. A D-Latch circuit created on wiRed Panda.

a

b

c

d

e

f

g

h

i

Figure 3. Directed Graph representing the logic circuit structure of the D-Latch
described on Figure 2. The labels in the vertices matches the white labels next
to the logic gates.

3.3. Arduino Code Generation
wiRed Panda is capable of generating code for Arduino that executes the logic of the
simulated circuits. That feature does not appear in any other simulator and enables a real
hardware implementation of the logic circuit.

The style of Arduino’s code is similar to codes in C language. Any code must
implement the setup function which is executed during software initialization to map
inputs and outputs into the proper I/O pins, and the loop function which is always executed
once the system is operational. In the file header, used libraries, global constants and
variables must also be declared [Smith 2011].

In our approach, the push buttons, input switches, leds and 7 segment displays
of the simulated circuit are mapped into I/O pins of Arduino. Simple logic gates such
as ands and ors are converted into boolean operations and the output of the logic gates
are represented by variables. The clocks and memory elements are turned into global
auxiliary variables.

In summary, the code for Arduino is generated as follows:



• Inclusion of libraries.
• Declaration of constants, representing circuit’s inputs and outputs.
• Declaration of global and auxiliary variables representing the logic gate’s.
• Implementation of setup function, where inputs and outputs are mapped to I/O

pins.
• Implementation of loop function. Given the input pin values, the signals are re-

peatedly propragated through the circuit of Arduino to the output pins, following
the order defined by the algorithm described in Section 3.2.

4. Software Interface and Functionality
wiRed Panda is a real time simulator, and hence allows the users to build and edit the
circuit while it is in execution. The used graphical interface is composed by the following
elements:

• a tool bar for file and project management (e.g. save, load, new) and circuit edition
(e.g. copy, paste, rotate);
• a search field to locate components among logic gates, memories, inputs, and

others;
• a side bar, with four tabs containing: inputs and outputs, logic gates, memory

elements and sub-circuits. These are elements that may be used to compose a
circuit;
• a canvas, in which the circuit is implemented and simulated.

We implemented a drag and drop interface to add components from the side bar
into the canvas. The wires are connected between gates by pulling wires from a gate port
to another also in a drag and drop fashion. The input and output ports are represented by
small gray and red squares, respectively.

Whenever a component is selected, a context menu appears in the side bar, con-
taining all the attributes of the selected component. For instance, for an and gate one may
choose the number of input ports. For a led, the color and name of the output may be
selected. If more than one component is selected at the same time, only the attributes in
common appear in the side bar allowing the edition of all of them at once. Figure 4 shows
the main elements of the graphical interface and an example of component selection.

Table 1 contains all the components available in the current version of wiRed
Panda.

In order to allow the creation of logic circuits in a organized and powerful way,
wiRed Panda is capable of representing any circuit as box that may be loaded and repli-
cated into other circuits. The boxes may be selected anytime from the sub-circuits tab
after the first time the box is created. The circuit represented by the box may be acessed
and edited at any time by double-clicking on any of its instances. Figure 5 contains an
example of the usage of the box feature.

Another interesting feature of the wiRed Panda is its capability of replacing com-
ponents with similar inputs and outputs. The user may select one or more components
(e.g. 2 or and 2 xor gates) and replace them by a similar (e.g. 4 nand gates) without the
need to remake the wire connections. This way the user will save project implementation
time. Figure 6 shows how replacement can be done by just right clicking and selecting
the component type that will replace current one(s).



Figure 4. Plataform main features and an example of component selection.

Table 1. List of components available in wiRed Panda.
Input/Output Logic Gates Memory Elements

VCC AND D-Flipflop
GND OR D-Latch

Push button NOT JK-Flipflop
Switch NAND SR-Flipflop
Clock NOR T-Flipflop
LED XOR

7 segments display XNOR
Multiplexer

Demultiplexer

Finally, the proposed software also has other visualization tools such as zoom
in and zoom out support, and the possibility to hide wires and logic gates for a cleaner
layout.

5. Experiments

The first stable version of wiRed Panda has been adopted to develop projects in the disci-
pline of Digital Circuits at the Federal University of São Paulo during the first semester of
2016. The feedback given by the students throughout the course was extremely important
to improve the project and to define future works.

A survey was taken in order to evaluate the quality and efficiency of the software.
Thirty volunteers answered it; they were all graduation students on Bachelor Degree in
Science and Technology - with Computer Engineering, Computer Science and Biomed-
ical Engineering trajectories - at the Federal University of São Paulo and were taking
classes on Digital Circuits. They had experience with the Altera Quartus II R© software at



Figure 5. Example of circuit used as a box, and the sub-circuit tab.

the first half of the course and then with wiRed Panda at the second half. The survey was
taken from 04/25/2016 to 05/01/2016.

The first question asked concerns to the overall quality of the software, presenting
how cohesive it is at this point of the development process. At Figure 7 it’s seen that
wiRed Panda delivers quality in spite of an absence of bad reviews and a mode of reviews
that attribute 80% of quality to the software, which is highly acceptable for such a young
project and can be improved over time.

At Figure 8 there are the answers for a question that addresses the learnability
aspects of wiRed Panda: ”Was it easy to learn how to use wiRed Panda?”. When it comes
to a didactic software, learnability is seen as one of the most important - if not the most
important - aspects of its implementation.

The most common answer to this question was 100%; also, the majority of the
answers were positive. It means that the software is capable of teaching how to use itself
in an intuitive and simple way. Unfortunately there was one bad review for this aspect
of the software, which shows that it doesn’t attend to all kinds of users yet and needs
improvement.

It can be seen on Figure 9 that wiRed Panda delivers very high quality on usability;
it matches the purpose of the software, which was meant to be lightweight, fast and to
allow the users to edit their schematics just few clicks - or shortcuts - away from all the
tools they need.

There was, like on the previously analyzed data, one bad review. Therefore, de-
spite of its qualities, the software still lacks features that would attend all kinds of users.

Figure 10 presents mixed opinions about wiRed Panda’s stability. The average
value was 71.6% but with a standard deviation of 19.7%, which shows that wiRed Panda
can be used on a daily basis by most people but still lacks stability.



Figure 6. Execution of component replacement feature.

1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

Figure 7. Answer to the question: ”How do you evaluate the overall quality of
wiRED Panda?”. Higher values mean better quality.

We notice a general positive reaction from the students with respect to wiRed
Panda. Analyzing Figures 8 and 9, it is clear that the main purposes of the software were
achieved, making the learning process of digital circuits simpler and more pleasant. The
time saved with the software can be directed to other academic activities. The practicality
of the software allows more complex projects to be developed during the course schedule,
deepening their understanding and experience with logic circuits.

Also, by means of Figures 7 and 10, it is clear that the stability of the software
should be improved. This is probably the main factor to lower the overall quality of
wiRed Panda. Nevertheless, the numbers are still reasonable and indicate one of the main
directions in which the project should be improved.

Finally, in Figure 11, we notice that wiRed Panda has fulfilled the expectation of
the students, since they would probably recommend it to others who want to learn digital



1 2 3 4 5 6 7 8 9 10

0

5

10

15

Figure 8. Answer to the question: ”Was it easy to learn how to use wiRed
Panda?”. Higher values mean that the software is easier to learn.

1 2 3 4 5 6 7 8 9 10

0

5

10

15

Figure 9. Answer to the question: ”How practical is wiRed Panda in terms of
usability?”. Higher values mean greater practicity.

circuits rather than other softwares.

The validity of this project rests on its uniqueness in combining stability, quality,
learnability and usability into a free and open source software. Therefore, wiRed Panda
appears as a reliable choice for teachers, students and enthusiasts who want to learn about,
design and test logic circuits.

6. Compilation and Installation Process
Currently, wiRed Panda is available for several operational system distributions. There
are pre-compiled versions for Windows and Linux which may or may not require an
installation process. In the case of the distributions that do not require installation, the
user may simply execute a binary file to initialize the program.

If one wants to install the Windows version, there is a friendly interface which only
requires the selection of the target folder. For Linux, the installation process is only avail-
able for Ubuntu 12.04 LTS or greater distros. In both cases, files with .panda extension



1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

Figure 10. Answer to the question: ”How stable is wiRed Panda to crashes and
bugs?”. Higher values mean more stability.

1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

Figure 11. Answer to the question: ”Would you recommend wiRed Panda rather
than other similar softwares for learning digital circuits?”. Higher values mean
greater likelihood to recommend wiRed Panda.

are automatically associated with wiRed Panda by the operational system, being opened
with a double left mouse click, and receive a specific icon that appear while exploring
files.

There is also the most recent version of the software that can be downloaded from
GitHub. In this case, compilation process is required, and it uses Qt 5.6 or greater ver-
sions. After the download, the wiRed Panda project can be loaded by QtCreator. QtCre-
ator will configure the compilation settings automatically. Then, the project must be com-
piled and executed and the wiRed Panda window will pop up. After compilation, the
binary file called ‘wpanda’ can be found in the build folder used by QtCreator.
The software can be compiled by means of the ‘qmake’ command, followed by the ‘make’
command.



7. Conclusion and Future Works
The development and usage of wiRed Panda for learning digital logic by means of dig-
ital circuit simulation proved to be satisfactory in all intended aspects. It is a free and
open source software which provides a nice and simple experience to users, with reduced
learning time and reasonable stability. Also, wiRed Panda has the differential feature of
Arduino code generation.

Future works include improvements to the performance of the project in dealing
with sub-circuits, debugging, inclusion of more components (i.e. circuits, inputs and
outputs), automatic hardware description language code generation such as Verilog and
VHDL, and waveform simulation.

References
[Bondy and Murty 2008] Bondy, J. and Murty, A. (2008). Graph theory, springer. Technical

report, ISBN 978-1-84628-969-9. USR.

[Ciletti and Mano 2007] Ciletti, M. D. and Mano, M. M. (2007). Digital design. PHI, pages
328–354.

[Ezust and Ezust 2006] Ezust, A. and Ezust, P. (2006). An Introduction to Design Patterns
in C++ with Qt 4 (Bruce Perens Open Source). Prentice Hall PTR.

[Komppa ] Komppa, J. Atanua - real time logic simulator. http://sol.gfxile.net/
atanua/. Accessed: 2016-06-23.

[Smith 2011] Smith, A. G. (2011). Introduction to arduino.

[Tynjala ] Tynjala, J. Logicly - the digital logic simulator. http://logic.ly/demo/.
Accessed: 2016-06-23.

http://sol.gfxile.net/atanua/
http://sol.gfxile.net/atanua/
http://logic.ly/demo/

	Metadata
	Introduction
	Frameworks Presentation
	Software Architecture
	Simulation Algorithm
	Arduino Code Generation

	Software Interface and Functionality
	Experiments
	Compilation and Installation Process
	Conclusion and Future Works

