
AA: The Algorithmic Autoregulation

(Distributed Software Development) Methodology

Renato Fabbri∗1,4, Ricardo Fabbri†2,4, Vilson Vieira‡1,4, Alexandre
Negrão4, Lucas Zambianchi4, Marcos Mendonça4, Daniel

Penalva3,4 and Danilo Shiga4

1São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos,
Brazil

2Polytechnic Institute (IPRJ), State University of Rio de Janeiro (UERJ), Nova
Friburgo, Brazil

3Institute for Theoretical Physics (IFT), Universidade Estadual Paulista (UNESP),
São Paulo, Brazil

4LabMacambira.sourceforge.net

June 4, 2013

Abstract

We present a new self-regulating methodology for coordinating dis-
tributed team work called Algorithmic Autoregulation (AA), based on
recent social networking concepts and individual merit. Team members
take on an egalitarian role, and stay voluntarily logged into so-called AA
sessions for part of their time (e.g. 2 hours per day), during which they
create periodical logs — short text sentences — they wish to share about
their activity with the team. These logs are publicly aggregated in a
Website and are peer-validated after the end of a session, as in code re-
view. A short screencast is ideally recorded at the end of each session
to make AA logs more understandable. This methodology has shown
to be well-suited for increasing the efficiency of distributed teams work-
ing on what is called Global Software Development (GSD), as observed
in our experience in actual real-world situations. This efficiency boost is
mainly achieved through 1) built-in asyncrhonous on-demand communica-
tion, documentation of work products and processes, and 2) reduced need
for central management, meetings or time-consuming reports. Hence, the
AA methodology legitimizes and facilitates the activities of a distributed
software team. It thus enables other entities to have a solid means to fund

∗fabbri@usp.br
†rfabbri@iprj.uerj.br
‡vilson@void.cc

1

LabMacambira.sourceforge.net


these activities, allowing for new and concrete business models to emerge
for very distributed software development. AA has been proposed, at its
core, as a way of sustaining self-replicating hacker initiatives. These claims
are discussed in a real case-study of running a distributed free software
hacker team called Lab Macambira.

1 Introduction

One of the defining features of modern times is the widening geographical dis-
tribution of software teams [9] creating what is called Global Software Devel-
opment (GSD) [6, 1, 2]. An example is the free software movement. Projects
and institutions like Mozilla Foundation has several employees and thousands
of voluntary developers distributed across many countries. The same is true for
GNOME [6], OpenBSD, MySQL or Apache Software Foundation, to cite just a
few of the most active projects.1 Beyond the free and open software commu-
nity, GSD has a growing popularity in every niche of the software industry as a
whole, even among those distributing their software with proprietary licenses.
This phenomenon is attributed to a variety of factors such as a larger labor
pool, natural globalization of software companies and foundations or even the
premise of cheaper cost of production [8].

Despite the advantages of GSD, it is known how difficult it is to coordinate
and fund free software on a significantly larger scale than currently practiced,
as series of qualitatively new situations arise. Distributed teams are very het-
erogeneous containing not only volunteers and very experienced developers, but
also contractors and freelancers from different backgrounds and cultures. Our
observations are founded on the factors suggested by Carmel [4] as main diffi-
culties for GSD: distance, time and cultural differences. In the case of free or
open software projects, all these factors are involved.

Another problem faced by modern software companies and other collectives
are frequent ineffective meetings, which are seldom focused on the particular
interest of any attendant. The result is that it has become the norm to partici-
pate in too many meetings with the “laptop open”, which can be un-productive.
Software developers like to code, to be productive, to have their hands on their
project, to do what they are best at. They dislike to forcibly stop for meetings
or to do other bureaucratic activities such as writing lengthy reports to justify
their funding [11].

To address these matters is the purpose of AA methodology and an as-
sociated software system for coordinating distributed team work, tackling the
disadvantages of GSD. Team members take on an egalitarian role, and stay vol-
untarily logged in the system for part of their time (e.g. 2 hours per day), during
which they log a periodical short text sentence or microlog — similar to a ‘tweet’
from Twitter — as the status of their activity. Logging is carried out using a
series of easy UI alternatives: UNIX shell commands, native GUI or Web page,

1Ohloh, the open source network, has a more complete and constantly updated list of the
most active projects on-line at www.ohloh.net.

2

www.ohloh.net


conventional social network posts, or chat messages to a log bot listening to
IRC, GTalk, G+, and others. These “microblog sentences” are publicly aggre-
gated and validated by other team members. Through AA, the community has
a methodology and an associated system to help implement and validate the ac-
tivities of a distributed software team. It implicitly legitimizes financial support
for the expansion of the activity of a distributed development team. The AA
methodology is specially useful for coordinating distributed and decentralized
team work, providing effective means to asynchronously update different team
members without the need for synchronous unproductive meetings.

A brief overview of current work on GSD methodologies related to AA is
presented in Section 2. In Section 3 the most relevant characteristics of the
AA methodology are outlined. In the same section, it is reported an actual use
case of AA for coordinating a team of 9 paid developers during the second half
of 2011, as well as a broader use case of AA from 2012 to the present time.
In Section 5, there are overall conclusions and indicative of future possibilities
for the practical use of AA in other types of teams of software developers or
organizations working on non-software distributed activities.

2 Related work

There has been a large amount of research in methodologies to deal with dis-
tributed teams of developers. Although this paper focuses on GSD, some of
its principles could also be adapted for smaller teams of developers working
at the same place, timezone and with minor cultural differences, depending
on the specific context and demands. Moreover, ‘distributed development’ is
generally thought of as being global which is not true. For instance, AA has
been effectively applied to a team whose members live in the same city but
work at different timeframes and locations, see Section 4. Even smaller groups
of developers working on the same building could use GSD methodologies (or
an adapted subset) to their benefit, e.g., to account for different work habits,
minimize formal meetings, document work process and history, and so on. A
thorough survey of these methodologies is beyond the scope of this paper; this
section presents a brief overview.

Various methodologies for GSD were built around the factors that affect dis-
tributed teamwork. As proposed by Carmel [4], these comprise three distances:
geographical, cultural and temporal. First, geographical distance handicaps (i)
coordination, the act of integrating all the tasks distributed between units [5];
(ii) control, or the process to maintain specific goals, policies or quality levels;
and (iii) communication. All those factors are correlated, e.g., a team needs to
have clear communication to work on tasks of a specific problem.

Second, cultural distance encompasses differences on organizational and nat-
ural culture. Spoken language, unit and ethnic values are common forms of such
distance. Some companies prefer to allocate development units in foreign loca-
tions with minimal cultural distance (e.g., an American company may prefer
Ireland due to spoken language similarity [5]). Third, the temporal distance

3



that hampers synchronous communications like telephone or video conferences.
Units of developers working on different time-zones are concerned with manag-
ing of their agenda guided by this temporal distance.

Targeting geographical distance, Carmel [5] suggests a strategy to reduce
intensive collaboration. His approach divides the whole software life-cycle into
levels of complexity. Each level has a degree of collaboration. For example,
some developers working on a project with high collaboration level should use
the follow-the-sun approach: when concluding the work day, they pass their
work to the team working on another time-zone. Other tactics are suggested
by the same author to deal with the three distances, such as separating foreign
units of developers in time-zone bands.

Battin et. al. [3] propose and discuss their experiments using specific method-
ologies created for the distributed development centers from Motorola (at the
time having 25+ software development centers worldwide). These methodolo-
gies included constant communication with critical units, incremental integra-
tion and schedules based on time-zones distributed to developers on 6 countries
from 3 continents.

In considering free software projects instead of companies, similar factors
are present and specialized methodologies arise. German [6] provides a concise
review of the methodologies used by the GNOME project, one of the most active
of all free software projects. The manuscript is centered on the software archi-
tecture. It begins by explaining that GNOME is separated into modules (76 on
version 2.4, to be precise) and each module has one maintainer who divides her
modules into separate parts in which other developers can work on independent
tasks, along other responsibilities. As in other free software projects, all develop-
ment was done using a bugtracker for bug and issue management, mail lists and
Internet Relay Chat (IRC) for discussion and communication and a version con-
trol system like Git or Mercurial. Periodical (commonly yearly) conferences like
GUADEC is common on free and open source projects for face-to-face meetings
and is based on a different place each time.

3 The AA methodology

Some of the strategies for GSD mentioned on the previous section are based on
complex methodologies and many were built for a specific company or software
center. This section describes an alternative methodology based on a simple
idea: small working sessions logged by a computational tool. Figure 1 summa-
rizes this methodology.

3.1 The AA session

From the developer’s perspective, the AA methodology is based on generating
small, high level reports called micrologs or AA shouts of what they are doing
in a specific period of time. This timeframe can be between 5 to 15 minutes in
our proposed practice, depending on what is most convenient for the developer

4



Figure 1: A mindmap of the AA methodology: 1) ‘developer engagement
cycle’, i.e., his use of AA; 2) ‘functionality’, i.e., main goals of the system; 3)
‘potentialities’, i.e., enhancements AA delivers to the developer’s context.

and the team. An AA Session is a focused period of continuous work, lasting
about 2 hours in our proposed regime, in which the developer issues a collection
of these short periodical micrologs. The developer can set reminders or alerts
to show up when it is time to microlog. The objective of the flexible timeframe
and alert scheme is to minimize developer overhead during his AA session. In
this way, the developer can issue micrologs while staying maximally focused on
his code. Each microlog may be sent directly to an on-line server, or stored
locally in a temporarily database for sending/pushing later on. This enables
offline micrologging and periodical alerting.

Developers optionally record a brief video screencast at the end of the session
summarizing what has been done, explaining his goals and challenges in his own
words and showing his most important results. This is very similar to the video
logging system in the movie Avatar, although it is clear, from July 2011 git
repositories and online wiki, that we have used this powerful concept in AA in-
dependently of any major mass media incident. Moreover, screencasting differs
from general videologging in that it typically captures actual workflow on the
computer screen. Screencasting, combined with the textual log of the AA Ses-
sion, renders the final report more understandable for the individual developer
himself and to other people searching for information about his production.

3.2 The AA website report

All AA reports made by the developers are ultimately sent to a Web server and
become publicly aggregated on a Website called pAAnel. It is then possible

5



Figure 2: AA Report Agregator Version 0.1. Messages of users hybrid, fil-
ter0, v1z e aut0mata about activities of interest for labMacambira.sf.net and
a diversity of collaborating entities (IPRJ/UERJ, IFT/UNESP, IFSC/USP,
OPW/Mozilla, PulaPirataComics). Each message is a “shout”, which, grouped,
forms an AA session.

for a manager or another developer to follow very closely the work of a given
developer, nearly real-time, reading each of his small reports or micrologs of
what he is working on.

Another possibility is to check older sessions to check when certain tasks were
carried out and the comments of the developer about the process. Since each
AA microlog happens in a very short timeframe of work, the information about
what was done – specially how it was done – becomes very easy to understand,
as opposed to having a long report in the end of a session.

In the current version of the AA server infrastructure, the aggregating web-
site allows the developer to attach a link for his screencast about each session.
Screencasts are specially useful on cases where the small reports were done in a
hurry, because the developer did not want to lose his focus on something critical
at that moment.

3.3 Peer validation

No set bosses or leaders are required in an ideal application the AA methodology;
in practice, the role of bosses basically disappears or is greatly alleviated –
hence the name Algorithmic Autoregulation and other implicit interpretations
to the AA acronym and symbol. The primary mechanism to achieve AA is
peer coordination and social behavior, be it deliberate or implicit. In order to
prevent spamming and to improve the overall quality of AA reports, each AA

6



session must be validated by another developer. More specifically, all reports
are read by someone that will mark them collectively as ‘valid’ or ‘invalid’ and
may optionally write commentaries about the specific session and quality of
micrologs. The developer in charge of validating any given session is randomly
assigned by the AA Web server, which sends an email to the chosen developer
with an URL to a validation interface.

Peer validation also helps in making decentralized collaboration more co-
hesive by encouraging members to be minimally aware of peer activities, even
when these are not immediately useful for accomplishing the task at hand. Au-
thors have observed that decentralized teamwork can get so efficient at actual
production that the team gets short-sighted in terms of coordination: non-
communicating subteams can get formed in practice if care is not taken, causing
a fragmentation of the collective. Peer validation is one way to help avoid frag-
mentation and is an essential mechanism of decentralized team autoregulation.

4 Results and discussion

Easy and effective GSD team management is the main purpose of the AA
methodology. The proposed methodology was applied to a group of 9 devel-
opers in July of 2011, 3 of which are coauthors of the present work, on what
was named Lab Macambira.2 The main objective of the team was to work on
an array of strategic free software projects in the broad audiovisual and web
categories, contributing directly to their development, submitting bug patches
or committing new features to their source code.

The team members had different levels of experience on software develop-
ment for large and distributed free software projects like Scilab or Mozilla. In
this way, one month of training was conducted by three experienced developers
(the first authors of the present work), teaching the basics of use of devel-
opment infrastructure tools like bugtrackers, programming languages, version
control systems, and build systems. After this period, a starter project was
proposed for new developers: to submit a bugfix or implement a new feature
and have an accepted patch or commit to the official repository for a large free
software project. Developers passing the starter project would be deemed ‘initi-
ated’ and be called a ‘Macambira’ developer, and be hired for the remainder of
the semester. Table 1 summarizes the effective accepted contributions of each
successfully initiated developer to free software projects in 2011, which used the
AA methodology.

In one month, each developer officially contributed to one or many free soft-
ware projects. Many developers started the initiation training with no knowl-
edge of what is free software and ended that period becoming a free software
developer. During that month, the same team of trainees also developed the
first version of the AA system and used AA to manage their activities, even
while developing the other aforementioned free software projects. Thus, AA
and the associated software system was tested, prototyped, and developed in

2LabMacambira.sf.net: http://labmacambira.sf.net.

7

http://labmacambira.sf.net


Table 1: Free and open software projects that received contributions from
successfully initiated developers or ‘Macambiras’ that worked under the AA
methodology. The first column lists applications to which contributions were
officially accepted and whose development process was tracked using AA. The
second column shows the pseudonym of the “committers”. At Lab Macambira
it is common practice to use pseudonyms in AA as identification in order to
enhance privacy.

Application “Committers”

Mozilla Firefox daneoshiga, bzum
Evince hick209, bzum, marcicano, mquasar
BePDF / Xpdf marcicano
Ekiga flecha
Empathy fefo
Lib Folks (Telepathy) kamiarc
Scilab v1z, humannoise
VxL v1z
ImageMagick v1z
OpenOffice hick209
Puredata v1z, automata, greenkobold, gilson, bzum
Puredata OpenCV v1z
Puredata GEM v1z, fefo, hick209
Puredata PDP v1z, fefo, hick209
ChucK rfabbri, automata
ChucK MiniAudicle rfabbri, automata
WebRTC automata
OSC-Web automata
Web-PD-GUI automata
Live-Processing automata
ChucK-Wiimote automata
Audiolet automata
Extempore automata

8



close contact with actual practice. The source code of AA — both the client
that sends the logs and the AA Web server — is public available as free soft-
ware3 and all the actual AA log data of the entire team of Lab Macambira from
2011 to the present time is also on-line4.

After the initial training period of 1 month, the initiated ‘Macambiras’
worked during 6 additional months on a large range of free software projects,
divided into work groups — each work group focusing on a specific theme like
video, audio and web — and funded by contracts, freelance, and support of
the Pontão Nós Digitais5. Table 2 has a list of new free software applications
created by ‘Lab Macambira’ since July 2011.

While using the AA system, developers learned to work asynchronously with
others and got used to the habit of periodically updating their status on their
projects. Each programmer was given the chance to work with considerable free-
dom, in any place and time of preference. The strictest required responsibility
was that of using AA for at least one session of 2h per day, while working on the
agreed upon tasks. The online pAAnel allowed each developer to quickly grasp
activities from others while avoiding interrupting them, a process further aided
by the screencasts. Adjustments to the task deadlines and milestones (which
were managed in Trac) were done based on verified progress of individuals and
labMacambira.sf.net team as a whole. The various newcomers benefited from
a fast learning team by the use of AA as a flexible and simple transparency
system. Updates from the team were not transmitted on a person-to-person ba-
sis, but rather on a person-to-team basis based on the available online progress
information.

As of this writing, ‘Lab Macambira’ unites over 15 software developers, and
key developers trained in 2011 continue to work voluntarily in the project.

5 Conclusions

In a scenario where Global Software Development is growing as a popular form
of software development in the entire software industry, there is an increasing
need for methodologies to deal with its potential disadvantages and at the same
time to amplify its advantages.

This paper has presented a new methodology for GSD, in scenarios involv-
ing a series of large or small groups of software developers, either working on
different countries or at the same room. The AA methodology implements a
simple system where each developer take notes of his work posting a periodic
log of small text sentences or micrologs. The sum of those activity logs, along
with an entire session of work, results in a complete unit of report. The report
is made public available through a Website and is validated by peers that are

3AA source code: http://labmacambira.git.sourceforge.net/git/gitweb.cgi?p=

labmacambira/aa.
4Logs of AA sessions: http://labmacambira.git.sourceforge.net/git/gitweb.cgi?p=

labmacambira/paainel.
5http://nosdigitais.teia.org.br.

9

http://labmacambira.git.sourceforge.net/git/gitweb.cgi?p=labmacambira/aa
http://labmacambira.git.sourceforge.net/git/gitweb.cgi?p=labmacambira/aa
http://labmacambira.git.sourceforge.net/git/gitweb.cgi?p=labmacambira/paainel
http://labmacambira.git.sourceforge.net/git/gitweb.cgi?p=labmacambira/paainel
http://nosdigitais.teia.org.br


Table 2: Software projects created by Lab Macambira since July 2011 with a
short description and the technologies involved (e.g., programming languages
or frameworks). It is interesting to note the heterogeneity of projects and their
areas of application.

Application Description Technologies

AA Algorithmic Autoregulation Python, PHP

Ágora Communs System for on-line deliberations PHP
SIP Scilab Image Processing toolbox C, Scilab
Animal An Imaging Library C
TeDi Test Framework for Distance Trans-

form Algorithms
C, Shellscript, Scilab

Macambot Multi-use IRC Bot Python
Conferência Permanente Platform for the permanent conference

of the rights of minors
PHP, JavaScript

CPC Center for accounting of the Brazilian
culture representation groups

Python, Django

Timeline Interactive time lines on the Web JavaScript
Imagemap Interactive marking for on-line photos JavaScript
ABT Program for real-time execution and

musical rhythmic analysis
Python

EKP Emotional Kernel Panic Python, ChucK
SOS Aggregation and diffusion of popular

and native knowledge about health
Python, Django

Creative Economy Platform for creative, collaborative
and solidarity economy of the culture
hubs and cultural entities

Python, Django

OpenID Integration Adaptations to existing software for
unified login through OpenID

PHP

pAAnel Dashboard for the real-time visualiza-
tion of Lab Macambira activity

Python, Django

Georef Collection of scripts to be used as refer-
ence, which aims to be a GIS platform
to map public data of use to citizens

Python, Django

AirHackTable Software for an instrument which
generates sound from flying origami
tracked by webcams

Puredata, C++, Scilab

10



randomly selected by the AA Web server.
AA is not limited to a work-management tool, but acts as a methodology to

improve the time sensibility of individuals, helping divide their complex tasks
in time into small chunks or sessions, and also reducing the need of extensive
reports or unnecessary meetings. By asking users to write a minimal text sen-
tence as a continuous log feed, the proposed methodology avoids disturbing the
flow of developers which are heavily concentrated on programming: developers
just have to type a few words and go back to coding.

Authors have analyzed data and gained practical experience on the use of AA
to autoregulate the work of Lab Macambira, a group of free software developers
from Brazil. Since July of 2011 the group has contributed and created new free
and open source software for a vast number of additional applications.

The AA methodology is not restricted to software development, even though
it was designed for the latter. As of this writing there is an entertainment
studio, Pula Pirata6, that has been using AA to manage their creative activities.
Other people with no software background, like social scientists, musicians and
activists also have been using AA and contributing for its broader improvement.

There are many aspects of the work which remain unfinished. Additional
ubiquitous client interfaces for micrologging from different interfaces beyond
IRC, e.g., web social services and email, would greatly make the use of AA easier
and more widespread, turning AA a truly ubiquitous and replicable system,
presented on everyday communication channels. Another research direction is
that the actual work logs generated by the Lab Macambira and Pula Pirata
collectives since July of 2011 could be statistically analyzed aiming to recognize
patterns in the behavior of individuals and their creative production process. It
would also be desirable to provide more extensive experiments and psychological
studies focusing on further backing specific claims made in this paper, in order
to refine the methodology, its mechanisms and parameters.

Acknowledgments

Authors acknowledge the financial support from Pontão Nós Digitais, and Ri-
cardo Fabbri acknowledges support from FAPERJ/Brazil 111.852/2012. Au-
thors also thank AA: the present research and even this manuscript was written
using AA. The complete log is on-line at www.pulapirata.com/skills/aa. Fi-
nally, authors are also grateful to IFSC/USP, IPRJ/UERJ, IFT/UNESP and
all AA users and collaborators, especially those who coded AA hacks for use
through shell and bot, and those who coded different Web interfaces in use.

References

[1] Global software development and delivery: Trends and challenges. 2

6 www.pulapirata.com.

11

www.pulapirata.com/skills/aa
www.pulapirata.com


[2] Global software development: Who does it? 2

[3] Battin, R., Crocker, R., Kreidler, J., and Subramanian, K.
Leveraging resources in global software development. Software, IEEE 18,
2 (2001), 70–77. 4

[4] Carmel, E. Global software teams: collaborating across borders and time
zones. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1999. 2, 3

[5] Carmel, E., and Agarwal, R. Tactical approaches for alleviating dis-
tance in global software development. Software, IEEE 18, 2 (2001), 22–29.
3, 4

[6] German, D. M. The gnome project: a case study of open source, global
software development. Software Process: Improvement and Practice 8, 4
(2003), 201–215. 2, 4

[7] Gobbo, F., and Vaccari, M. The pomodoro technique for sustainable
pace in extreme programming teams. Agile Processes in Software Engi-
neering and Extreme Programming (2008), 180–184.

[8] Komi-Sirviö, S., and Tihinen, M. Lessons learned by participants of
distributed software development. Knowledge and Process Management 12,
2 (2005), 108–122. 2

[9] Last, M. Understanding the group development process in global software
teams. In Frontiers in Education, 2003. FIE 2003 33rd Annual (2003),
vol. 3, IEEE, pp. S1F–20. 2

[10] Reis, C. R., and de Mattos Fortes, R. P. Caracterizaç ao de um Pro-
cesso de Software para Projetos de Software Livre. PhD thesis, University
of São Paulo, Brazil, 2003.

[11] Thompson, C. Solo performance: shut up and start acting like an intro-
vert. Wired 20.04 (April 2012), 036. 2

12


