IN
N

XI Worshop sobre Software Livre

fisl

Im?lerr_\enting a modern API for CDS/ISIS,
a classic semistructured NoSQL database

Luciano G. S. Ramalho

Departamento de Biblioteconomia e Documentagdo, Escola de Comunicagdes e Artes
Universidade de S&o Paulo — Sao Paulo, SP - Brazil

BIREME/PAHO/WHO, Latin-American and Caribbean Center on Health Sciences Information

luciano.ramalho@bireme.org

Abstract. CDS/ISIS is a family of semistructured, “NoSQL’ database products created by
Unesco and used at the SciELO digital library as well as thousands of academic libraries since
the 1980s. This paper describes how a database-independent API is being developed to allow
the LILACS bibliographic methodology created by BIREME to be implemented over CDS/ISIS and
modern semistructured databases such as MongoDB and CouchDB.

1. INTRODUCTION

Much of the data on the Web is organized in hierarchies and is multimedia in nature, therefore
consisting of several parts that nevertheless must be treated as a unified whole. Modeling such
data in normalized relational databases is difficult, and may result in performance problems due
to the cost of joins. De-normalization and horizontal scaling help meet the scalability challen-
ges of the Web, but are non-trivial to implement on relational databases originally designed to
enforce consistency at all times [Eure, 2009]. These issues have prompted renewed interest in
non-relational databases, collectively known since 2009 by the informal “NoSQL’ term.

Apache Cassandra, Redis, Apache CouchDB and MongoDB are some examples of Open
Source NoSQL databases. Cassandra was created by Facebook and is also used by Twitter and
Digg. Two large-scale deployments of proprietary NoSQL databases are BigTable, by Google,
and Dynamo by Amazon.com, used by its S3 storage web service.

While most NoSQL products mentioned have been released in the past 10 years, CDS/
ISIS is a non-relational database created by Unesco in the 1960s, ported to PC/DOS microcom-
puters in the 1980s and then to the Windows and Linux operating systems. Today it is used by
thousands of libraries to run their on-line catalogs.

The C language port of CDS/ISIS for Linux and Windows, called CISIS, is used to run two
of the largest on-line digital libraries in Latin America, LILACS? and SciELO?, and is deployed in
hundreds of cooperating scientific information centers, handling more than 18 million bibliogra-
phic records. CISIS was developed and is maintained, since the early 1990s, by BIREME/PAHO/
WHO, the Latin American and Caribbean Center on Health Sciences Information, a specialized

! LILACS: Latin American and Caribbean Literature in Health Sciences), part of the Virtual Health Library coordinated by
BIREME/PAHO/WHO
2 SciELO: Scientific Electronic Library Online), a partnership between FAPESP, CNPq, FapUNIFESP and BIREME/PAHO/WHO

center of the Pan American Health Organization/World Health Organization, located in Sao Pau-
lo, Brazil, at the main UNIFESP3 campus.

2. THE DATA MODEL OF CDS/ISIS

Beyond the informal NoSQL descriptor, CDS/ISIS is more precisely described as a docu-
ment database implementing the data model of the ISO-2709 Format for Information Exchange
standard, which in turn reflects the data model of the Library of Congress MARC* format for the
representation of bibliographic records.

2.1. Relaxing the restrictions of the First Normal Form

MARC fields can be multivalued and composite. Therefore, the MARC data model viola-
tes the First Normal Form (1NF) atomicity requirement: “values in the domains on which each
relation is defined are required to be atomic with respect to the DBMS” [Codd, 1990]. Relaxing
the 1NF atomicity requirement greatly simplifies the development of bibliographic databases
and the exchange of records among libraries.

[...] it is interesting to note the absurdity of the NRM [Normalized Relational
Model]: if a book has 3 authors and 5 subjects, it will be necessary to represent
it in the NRM through a row in the Books table, plus 3 rows in the AuthorNames
(which would implement the corresponding multivalued attribute) and another
5 in the Subjects, for a total of 9 rows in three separate tables [...] yet what we
hold in our hands in the real world is just one book [...] [Setzer, 2005]°

2.2. The semistructured data model

In the database theory literature, the data model most similar to the CDS/ISIS database
structure is the semistructured data model [Abiteboul, 1999].

The semi-structured data model is designed as an evolution of the relational data
model that allows the representation of data with a flexible structure. Some items
may have missing attributes, others may have extra attributes, some items may
have two ore more occurrences of the same attribute. The type of an attribute is
also flexible: it may be an atomic value or it may be another record or collection.
Moreover, collections may be heterogeneous, i.e., they may contain items with
different structures. The semi-structured data model is a self-describing data mo-
del, in which the data values and the schema components co-exist. [Liu, 2009]

In a CDS/ISIS record, fields are identified by numeric tags from 1 to 32767. The meaning
of each numeric tag is defined by the application. For instance, in the LILACS methodology,
field 10 is Author and field 12 is Title. The fact that each field occurrence is preceded by its tag
number means that fields may be omitted or repeated as needed.

3 Universidade Federal de S&o Paulo
4 MAchine-Readable Cataloging
> Translated from the Brazilian Portuguese book by Valdemar Setzer “Bancos de dados” (1st ed., 2005)

fisl

I
w

aseqeiep TOSON PaJnidNJISIWLSS JISSe|d e ‘S|S1/SAD 404 |dY uiapow e 6unuauja|dw|

IS
IS

XI Worshop sobre Software Livre

Multivalued attributes are represented by repeating field tags. In LILACS, field 10 (Au-
thor) may be repeated, and field 12 (Title) may be repeated if the title is available in multiple
languages.

2.3. CDS/ISIS data model limitations
CDS/ISIS has restrictions that are not in the general semistructured data model:

1. There is only one level of nesting: fields may contain subfields but subfields may
not contain sub-subfields;

2. Subfields must be labeled from A to Z and from 0 to 9, therefore a field can only
contain 36 subfields;

In addition to the 36 subfields, a field may have content that is outside of any subfield.
Because the syntax for delimiting subfields uses only one marker at the start of the subfield,
data outside of the subfields must appear before the first subfield.

10 «Lewis Carroll~1USP~2ECA~ pBrasil~cSao Paulo”~rEditor»

Figure 1: Sample of an author field (10) showing subfields labeled “1”, “2”, “p”, “c” and “r”. The
“p” subfield describes the country of the author, in this case “Brasil”. The name of the author,

“Lewis Carroll” is not preceded by a subfield delimiter, therefore is not part of any subfield.

2.4. Schema definition in CDS/ISIS

Like all semistructured databases, CDS/ISIS is “schemaless” in the sense that a data-
base instance does not have a predefined schema. But in practice, CDS/ISIS databases usually
have at least a documented, human-readable schema, describing the semantics of each field
tag, and defining which field tags are mandatory or repeatable and the subfields that may
be used inside each field tag. A rich example of such a schema is the LILACS Data Dictionary
[BIREME, 2008]. Some CDS/ISIS applications, like WinISIS and ABCD, allow the user to define a
schema in a Field Definition Table (FDT), which is used to generate data entry forms.

2.5. Handling fields and subfields in the ISIS Formatting Language (IFL)
The CDS/ISIS family has a data extraction language called the “Formatting Language”,

henceforth the IFL. The IFL is used primarily to generate displays and reports of database recor-
ds and to generate indexes supporting efficient retrieval.

Table 1: Examples of ISIS Formatting Language expressions

IFL expression Result Comment

v10[1] Lewis Carroll~1USP~2ECA”™ first occurrence of field tag 10
pBrasil”~cSaoPaulo”~rEditor

v10™p[1] Brasil content of p subfield in first occurrence of field tag 10

v10~p[1l]*0.3 Bra substring starting at offset zero with length 3 of p

subfield in field tag 10

fisl

The IFL is flexible but its syntax is terse. Readability is also hindered by the fact that field
tags are always numeric, subfield labels are limited to one alphanumeric character, and the
language lacks abstraction mechanisms to allow the user to define functions or assign friendlier
identifiers to expression results.

3. ISIS-DM, A MODERN API FOR SCHEMA DEFINITION AND ACCESS

In 2007, BIREME/PAHO/WHO started the development of the ISIS Network Based Platform (ISIS-
NBP) project [BIREME, 2010], which aims to re-implement the functionality of CISIS in the Python
programming language using a service oriented architecture. ISIS-NBP is free software, distribu-
ted under the GNU General Public License. Most of the effort from 2007 to 2009 was devoted to
the CISIS binary-compatible storage layer and the Formatting Language interpreter.

A recent development within ISIS-NBP is ISIS-DM, the ISIS Data Model application pro-
gramming interface. The ISIS-DM effort aims to provide an API for:

1. Schema definition through classes, similar to modern object persistence fra-
meworks;

2. Data extraction using operators and methods similar to modern collection and
string handling APIs;

In other words, the goal is to allow programmers to express constraints and functionality
similar to those of the CDS/ISIS Field Definition Table and the CDS/ISIS Formatting Language, but
in contemporary, object-oriented programming languages.

The API aims to be database-independent. Objects defined in the ISIS-DM should be
easily persisted in CDS/ISIS and other semistructured databases.

3.1. Schema definition

Listing 1 shows an example of a very simple ISIS-DM schema definition in Python. A
schema called Book is being defined as a subclass of CheckedModel, an ISIS-DM class which
implements schema constraints and validation. Field types are implemented as

Python descriptors, which control instance attribute access.

class Book(CheckedModel) :
title = SingularProperty(required=True, subfields='s')
creators = PluralProperty(required=True, subfields='yr')
pages = NumberProperty(validator=gt zero)

Listing 1: Simple schema definition showing required and repeatable fields.

Non-repeatable string fields are instances of SingularProperty; repeatable fields are ins-
tances of PluralProperty. Both types may have subfields, which are always optional. The API
checks whether subfields entered match those in the field definition. Internally, string data is
converted to instances of a CompositeField class which implements several subfield access
methods and operators, including iterators over the subfield keys and values.

A NumberProperty is non-repeatable and may only contain integers or floatingpoint
numbers. For any type of property, a validator function may be specified, returning an error
message when the field value fails a test.

fisl

IS
v

aseqeiep TOSON PaJnidNJISIWLSS JISSe|d e ‘S|S1/SAD 404 |dY uiapow e 6unuauja|dw|

IN
o

XI Worshop sobre Software Livre

>>> book = Book(title='The Annotated Alice”sDefinitive Edition',
pages=352,
creators=['Lewis Carrcll®yl832-1898“rAuthor',

'John Tenniel”rIllustrator',

- 'Martin Gardrner®yl914-2010~rEditor'])

>»> book.title

u'The Annctated Alice”sDefinitive Edition'

>>> print book.title.s

Definitive Edition

>>> print book.creators([0].y

1832-1898

>>> for creator in book.creators:

d print '%-12s: %s' % (creator.r, creator[0])

Ruthor :+ Lewis Carrocll

Illustrator : John Tenniel
Editor : Martin Gardner

Listing 2: Instance creation and attribute access. Fields may be handled as a whole
or by subfield, output is formatted with the Python % formatting operator.

The CheckedModel.check instance method verifies the presence of required fields (see

listing 3). It returns a dictionary of attribute names and error messages, useful for displaying in
Web or GUI forms. Validator functions are applied upon instance creation or attribute change,
and generate exceptions with custom messages.

>>> bl = Beook()

>>> bl.check()

{'creators': u'Required value missing.', 'title': u'Required
value missing.'}

>>> b2 = Book(title='The Annctated Rlice”sDefinitive Edition',
e pages=352)

>>»> b2.check()
{'creators': u'Required value missing.'}
»>>> bZ2.creators = ['Lewis Carroll']

>>> b2.pages = 0

Traceback (most recent call last):

ValueError: <pages> must be greater than zero

Listing 3: Demonstration of .check method and validator functions.

4. CONCLUSION

4.1. Lessons learned

Using modern language features such as metaclasses, operator overloading and object

properties (Python descriptors), part of the functionality of the CDS/ISIS Field Definition Table
and of the Formatting Language was implemented in less than 700 lines of code, including auto-
mated tests (doctests), in the isisdm.properties package composed of three Python modules.®

6 Source code available at the BIREME/PAHO/WHO RedDes public repository: http://reddes.bvsalud.org/projects/isisnbp/
browser/isisdm/properties or via http://bit.ly/isisdmrepo

fisl11

The CheckedModel class and the various property classes provide a means of defining
the schema and validating records in a way that will allow automatic generation of data en-
try forms. To allow ordered retrieval of field definitions it was necessary to define a special
metaclass for an OrderedModel, which collaborates with an OrderedProperty descriptor class.
OrderedModel is the superclass of CheckedModel, and OrderedProperty is the superclass of all
properties shown here.

Besides the functionality shown here, features already implemented include:

. Controlled-vocabulary checking via lists provided at field definition;
* Alternate syntaxes to access subfields defined with numeric keys;
. Various iterators for flexible field and subfield access;

The CDS/ISIS Formatting Language implements both presentation and data extraction
functions. Many of its presentation features were designed for fixed width displays with mo-
nospaced fonts, while today all CISIS applications in production at BIREME/ PAHO/WHO use a
Web interface where those formatting assumptions are no longer valid. On the other hand, the
richer data extraction APl made possible with Python and other modern languages allow more
convenient handling of fields and subfields in the presentation layer, where sometimes data will
be rendered directly as HTML elements and other times as JSON or XML for delivery and display
via Ajax.

4.2. Future work

The ISIS-DM APl aims to be language-independent. The current implementation is in
Python, but a PHP version would be valuable, because of its popularity and its use in current
BIREME/PAHO/WHO systems which are widely distributed. Also, storage drivers should be deve-
loped for ISIS-NBP, CISIS, and at least a couple of the most popular semistructured databases,
such as Cassandra, CouchDB, MongoDB and Google Datastore. The CouchDB implementation
is planned as part of a graduation monograph for a bachelors degree in Library Sciences which
the author is currently working on.

REFERENCES

Abiteboul, S.; Buneman P.,; Suciu, D. (1999), Data on the web: from relations to semistructured
data and XML, San Francisco: Morgan Kaufmann, 1999.

BIREME (2008), Diccionario de datos del modelo LILACS Versién 1.6a, Sdo Paulo: BIREME/PAHO/
WHO, 2008.

BIREME (2010), ISIS-NBP Project Repository, Sao Paulo: BIREME/PAHO/WHO http://reddes.bvsa-
lud.org/projects/isisnbp/, accessed June 2010.

Codd, E. F. (1990) The Relational Model for Database Management Version 2, Reading, MA:
Addison-Wesley, 1990.

Eure, I. (2009) “Looking to the future with Cassandra”, In: Digg Technology Blog http://about.
digg.com/blog/looking-future-cassandra, September 9, 2009.

Liu, L.; Ozsu, M. T. (2009) Encyclopedia of database systems : Springer, 2009

Setzer, V.; Corréa da Silva, F. (2005) “Bancos de dados aprenda o que sdo, melhore seu conhe-
cimento, construa os seus”, 12 ed. Sao Paulo: Edgard Bllcher, 2005.

fisl

I
~

aseqeiep TOSON PaJnidNJISIWLSS JISSe|d e ‘S|S1/SAD 404 |dY uiapow e 6unuauja|dw|

