
An embedded communication platform based on Linux for
automotive systems

Fernando H. Ataide1, Alan C. Assis1, Carlos E. Pereira1, Fabiano C. Carvalho2

1Department of Electrical Engineering – Federal University of Rio Grande do Sul (UFRGS)
90035-190 Porto Alegre, RS, Brazil

2Department of Computer Science – Federal University of Rio Grande do Sul (UFRGS)
91501-970 Porto Alegre, RS, Brazil.

{fhataide,acassis,cpereira }@ece.ufrgs.br, fccarvalho@inf.ufrgs.br

Abstract. In the last years, important research has presented different ap-
proaches in the real-time embedded communication domain aiming to cover
the growing demands of performance, predictability and reliability of emerging
applications. Such requirements involve low latency, reduced jitter, time com-
posability, fault-tolerance and finally, support for future modifications. Mainly
in the automotive domain which is considering the possibility of replacing the
major part of mechanical and/or hydraulic systems for electronic systems, the
importance of predictable behavior with some degree of flexibility plays a key
role. This paper presents a prototype implementation of the FTT-CAN protocol
over Freescale ColdFire platforms running RTAI as an embedded Linux – a work
in the scope of the Baja-by-Wire1 project which is being developed at Electrical
Engineering Department of UFRGS. Some design issues together with latency
and jitter results are provided and discussed. The project was developed entirely
with open source tools.

1. Introduction

Real-Time Embedded Communication Systems (RTECS) are becoming widely used in
several areas of application, including automotive embedded systems. In this domain,
severe timing constraints predominates hence the need of predictable service behavior in
both time and value dimensions even in the presence of faults as the system can be strictly
involved with either integrity of people or expensive equipment. For instance, nowadays
there is a strong interest in the automotive industry towards the production of popular
vehicles with electronic driving control, where conventional mechanic and hydraulic sys-
tems are replaced by electrical actuators and sensors focusing on weight diminution, cost
and power consumption savings.
The main requirements involved in safety-critical applications are fixed protocol latency
(low jitter), composability, support for fault-tolerance techniques and also some degree of
flexibility in order to account for future modifications during the design phase. Consid-
ering that a distributed system is formed by a set of processing units which are spatially
distributed in space, there must be a communication protocol providing reliable and timely
services to the application layer. In this context, some existing protocols claim being able
to fulfil these rigorous safety requirements. The first one is the TTP/C [TTA-Group 2003]

1This project is currently sponsored by FreeScale Semiconductor of Brazil.

protocol and its Time-Triggered Architecture (TTA) – a result of many years of work
started in 1979 at the Technical University of Berlin with the MARS project. The other
one is the FlexRay Communication System [Consortium 2004] developed by the FlexRay
Consortium, formed by a group of strong companies in the automotive area.
A common characteristic of these protocols is their static communication behavior. Bus
arbitration is essentially TDMA-based so the transmission times of all messages must be
known in advance. To accomplish each network station has a fixed time slot for transmis-
sion that must be specified at design phase. In both TTP/C and FlexRay The definition
of the slot time boundaries is fixed and cannot change during runtime. The FlexRay pro-
tocol in particular combines both time-and event-triggered traffic by defining a dynamic
bus access window in which bus arbitration is performed in a FTDMA (Flexible Time
Division Multiple Access) scheme thus providing some degree of flexibility. This feature
is important for many of modern digital control systems (e.g. industrial control process
and automotive systems) mainly when the controlled object dynamics cannot be com-
pletely defined before runtime thus requiring the control system to be adaptive. A RTECS
with a high flexibility degree can provide a more efficient resource utilization, enhanced
maintainability and easy integration/allocation of new functions in response to new func-
tionality demands. The reader is referred to [Almeida et al. 2002] for a detailed overview
about the main advantages of providing enhanced flexibility support in distributed control
systems.
The FTT-CAN [Almeida et al. 2002] (Flexible Time-Trigerred Comunication on CAN)
consists in a complete communication platform which was proposed as a solution to meet
the flexibility requirement with guaranteed timeliness and efficiency. It combines a dy-
namic time-triggered together event-triggered traffic by means of temporal isolation of
bus access time. In contrast to TTP/C and FlexRay, which have a static time-triggered
schedule, all communication load can be dynamically scheduled at runtime. Unfortu-
nately, the FTT-CAN is not commercially available yet. Nevertheless, its documentation
is available in deep detail for system designers to implement the protocol.
Another important factor in this context is related to Real-Time Operating System
(RTOS). In this project we adopt one to reach more reduction code size, maintenance
improvement, reuse, and reduction of the implementation complexity. The choice of one
suitable may be decisive in all life cycle of project.
This paper presents some practical results from a distributed system prototype in which
the FTT-CAN protocol was implemented over RTAI as an embedded Linux running in
a Freescale Coldfire embedded platform. The work is part of a drive-by-wire project,
called Baja-by-Wire1, which is being developed at the Electrical Engineering Department
of UFRGS.
This paper is organized like follows. It starts with a brief presentation of the Baja-by-Wire
project, followed by an overview of the FTT-CAN protocol. The proposed communica-
tion architecture with its mains components and functionalities is presented next. Finally,
we discuss some practical results obtained from our prototypes followed by some conclu-
sions and directions of future research.

2. The Baja-by-Wire Project
The Baja-by-Wire is a multi-disciplinary project which is being carried out by the Electri-
cal Engineering Departments in cooperation with the Mechanics Department of UFRGS
(Federal University of Rio Grande do Sul). The main goal is to develop a drive-by-wire

dynamic system for an off-road race car as a digital distributed system with master and
station nodes interconnected through a single serial bus. The FTT-CAN protocol was
chosen as the underlying protocol due to its enhanced support for operational flexibility
requirements. A simplified scheme of the car electronic system with its Electronic Control
Units (ECUs) is depicted in Figure 1. The project lifecycle is divided in two phases. In

Figure 1. Steer-by-Wire System architecture

the first phase a functional prototype of a steer-by-wire system together with a dash board
(instrumentation panel) and a parking assistant system may be developed. The purpose
of the dash board is to collect telemetry and system diagnosis information such as speed,
temperature, tacho and fuel level. Additionally, an interactive visualization of the parking
assistant behavior is being considered. In the second phase the necessary fault-tolerance
mechanisms must be included in order to ensure an appropriate dependability degree.

3. FTT-CAN Protocol

The FTT-CAN was proposed to cover the flexibility requirement on critical systems
through online message admission control of time-triggered traffic without jeopardizing
the overall system timing behavior [Almeida et al. 2002]. Admission control is performed
by a central scheduler running at a particular node – the so called master node. It can re-
ceive dynamic transmission requests which are processed and evaluated by a feasibility
algorithm. The time-triggered traffic is based on a relaxed master-slave medium access

Figure 2. The Elementary Cycle (EC) in FTT-CAN.

control. A specific message – the Trigger Message (TM) – is transmitted by the mas-
ter node in order to trigger the beginning of an Elementary Cycle (EC) inside which the

slave stations are transmit their messages either in the Event-Trigger (ET) phase or in the
Time-Triggered (TT) phase. The TM carries schedule information that indicates which
messages must be present in the next TT phase. Eventual bus access collisions between
slaves messages are resolved by the native arbitration mechanism of the original CAN
protocol.
The time-triggered message exchange of FTT-CAN follows a producer-consumer model
whereas the event-triggered offers only send and receive basic services to be used when
the application layer has aperiodic data to deliver. Slaves with pending aperiodic mes-
sages may transmit only during the ET phase which is the remaining time that is not used
for time-triggered traffic in an EC. The transmission sequence is defined in the payload
field of the TM message.
In FTTCAN, periodic message exchange takes place in an autonomous manner, i.e. the
protocol stack proccess is responsible for the transmission of all messages inside the tt
phase hence the application tasks do not need to invoke send and receive primitives.
In the ET-phase however messages are transmitted in response to explicit requests from
the application layer.

4. The RTOS and Hardware Platform
The use of a RTOS is mandatory in certain circumstances when multiple instruction flows
must be multiplexed for execution in a single processor. Depending on the complexity of
the application, the use of a single execution flow to accommodate all system functions
may result in unclear code and a time-consuming design phase. For that purpose a RTOS
provides many advantages such as reduced code size, maintenance improvement, reuse,
and so on.
Common features of a RTOS are: real-time scheduler, semaphores, interprocess commu-
nication mechanisms, interrupt handlers, among others. The absence of them means that
the programmer himself would have to write low-level routines to handle hardware inter-
faces and devices. Thus, a RTOS provide means to implement more reliable code with
reduced design turnaround time which is crucial for short time-to-market schedules.
For this project we decided to use an open source RTOS to run on the FreeScale ColdFire
MCF5282 microprocessor platform. As a result of a comparative analysis the choice was
to adopt theµClinux [Dionne and Durrant 2002] OS – a Linux operating system for mi-
crocontrollers without Memory Management Unit (MMU). An advantage of Linux-based
operating systems are their modular kernel architecture which increases the flexibility of
the system at runtime. In other words, kernel modules can be dynamically loaded for
a particular situation, for instance, an Ethernet device driver and protocol stack can be
loaded whenever necessary in order to provide gateway functionality over a short period
of time.
Unfortunately, theµClinux by itself is not a RTOS. Its kernel is non-preemptive so there
is no way to implement a real-time task scheduler. However, nowadays there are some
projects aiming to provide real-time extensions for Linux, the most relevant of them be-
ing the RT-Linux [Yodaiken and Barabanov 2003] and the RTAI [Mantegazza 2001] ex-
tensions. The RTAI relies on the HAL (Hardware Abstraction Layer) concept and it
considers the entire Linux kernel as a background task running when there is no real-time
activity. It intercepts all hardware interrupts and routes them to either standard Linux or to
real-time tasks. The reader is referred to [Andersson and Lindskov 2003] for an accurate
comparative study between RT-Linux and RTAI.

For the purpose of this work the RTAI extension was considered the best solution. The
factors that consolidated that choice were: 1) it is an open source project; 2) it has a ma-
ture code base; 3) there are free tools available, 4) small footprints; 5) active development
community and 6) support to a wide variety of architectures such as x86, PowerPC, ARM,
MIPS and m68k.
µClinux together RTAI gives us all present features of a RTOS that were presented above.

5. FTT-CAN over RTAI/ µClinux Approach
Since the RTAI extension provide means to add time-critical functionality to the modular
kernel ofµClinux, the primitive functions of the FTT-CAN protocol were included in the
Kernel Space Level (KSL) aiming to ensure proper real-time execution behavior. Like-
wise, on the User Space level (USL) it was decided to attach diagnostic tasks which are
not time constraining. The logical architecture of the implementation, e.g. the modules
stack, is depicted in Figure 3 in which the arrows demonstrate the relationships between
its components. The RTAI extension has its own modules stack providing a set of ba-

Figure 3. Modules stack.

sic services which allow the implementation of fully preemptive scheduling. However,
for the purpose of this work only three modules were actually used. The first one is the
RTAI module that implements the basic RTAI framework including interrupt dispatcher
and low-level timer support. The second one is theRTAI-SCHED which provides pre-
emptive scheduling of kernel modules tasks. Last, theRTAI-FIFO module consists in
FIFO data structures and semaphores that are used for communication between the user
and kernel spaces. On the left side the protocol stack is shown and on the top is the
Application module that represents the process control tasks like sensor reading and
calculation of output results. At the initialization procedure the kernel of slave nodes must
be loaded with theFTT-Station module whereas the FTT-CAN master must be loaded
with theFTT-Master module.
On the base of FTT-CAN stack there is aCAN Device Driver module which supply
some methods to access an external, stand-alone CAN controller internal registers. It was
decided to code a dedicated driver aiming to reduce additional overhead that would be
generated if a COTS driver were used. TheCAN Device Driver consists only in a
restricted set of access primitives which provides means for both theFTT-Station and
FTT-Master to interface with the controller.
TheFTT-Station module is implemented as 2 high priority tasks (sync and async in
Figure 3) and it is responsible for all message exchange on the system. For instance, it ac-
cesses data base either to update it with new data from the network or to load one sample

for transmission inside a CAN message. The RTAI interrupt service is the main resource
of this module. Each time a new Elementary Cycle is started by the transmission of the
TM an interrupt raises to trigger the execution of theFTT-Station module. Thereafter
the contents of the TM is decoded for the module to know which RTE samples must be
sent in the next time-triggered phase.
For a high level of abstraction the concept of Real-Time Entity (RTE) presented in
[Kopetz 1997] was adopted. A RTE is any application variable whose validity is restricted
in time. Each RTE data structure has the following attributes:

• Identifier (ID)
• Data size (DSize)
• Pointer to the data buffer (PDataBuff)
• A flag indicating whether it is produced or consumed (PC)
• Validity information over time (Tval)
• Pointer to its corresponding real-time task (Task)
• A flag indicating whether it is a time- or an event-triggered variable (EtTt)

The ensemble of RTEs of interest in a station node is allocated in the Real-Time En-
tity Database (RTEDB) representing the interface between application software and the
protocol stack (Figure 3). The RTEDB is broken into two subtables aiming to optimize
execution time since theFTT-Station module does not have to scan the entire RT-
EDB to search for outgoing data. Event-triggered messages are treated differently – they
are queued in both sender and receiver sides. The queuing process is intelligent since it
reorders the output sequence buffer according to the message priority defined by its iden-
tifier field. This prevents high priority messages from being blocked in the queue due to
low priority ones that lost successive transmission attempts. The creation of the RTEDB
in memory is performed during the startup phase. As the set of RTEs in the application
process is modified any required changes in the RTEDB can take place at runtime.
The temporal isolation between the TT and ET phases is guaranteed by means of a global
offset from the transmission of the TM. Once theFTT-Station is informed about the
reception of the TM it starts an internal timer in order to schedule the beginning of the
following time-triggered phase at the appropriate point in time. ET messages which have
been previously load for transmission are sent if and only if there is enough time before
the tt phase begins. This is implemented by enabling/disable the corresponding output
buffer of the CAN controller.
On Message exchange level of time-triggered phase the control is autonomous, i.e. the
transmission and reception is performed by FTT-CAN protocol level without interference
from of application level. The transmission sequence is carried out through a buffer de-
fined at TM message decoding moment. In event-triggered phase the message exchange
has implict requests of application level through a specific API in the external control
way. Each request is queueing in agreement message identifier which define the message
priority. There are two distinct queue to event-triggered phase, one to RTE event-triggerd
process variable and other to simple messages.
Finally, theFTT-Master module is responsible for the dynamic message scheduling of
the TT phase. Prior to sending the TM message it defines the sequence of messages to
be transmitted based on a schedulability analsys method that takes into account timing
requirements like periodTi, priority Pi, worst-case transmission timesCi, relative phase
Phi and deadlineDi. On the other hand aperiodic traffic is scheduled based on fixed
priority methods.

6. Practical Results

The RTAI interrupt latency and jitter has direct impact on the protocol response times.
However, in this current implementation the resulting interrupt latency is near 21µs with
an associate jitter of 4µs which is relative low when comparing to the timing requirements
of the application.
For a jitter evaluation of the FTT-CAN communication platform we consider a set of
messages as different periods showed in the Table 1. This set was based on baja-by-wire
application (Figure 1). Each message was sampled by 3000 successive occurrences. The

Table 1. Set of messages for evaluation
Name Description Node Pi Ti Phi

1 SteerWheelAngle Angle for actuation on wheels 4 7 5 0
2 WheelAngle Current Angle of the wheels 2 6 5 0
3 WheelSpeed Current speed 2 5 5 0
4 EngTemperature Current engine temperature 1 4 100 50
5 FuelLevel Current level fuel 6 3 100 50
6 FrontParking 3 bits value of front sensor 1 2 200 100
7 BehindParking 3 bits value of behind sensor 6 1 200 100

EC has the minor period of the set message, in this case 5ms. The Figure 4 (a) showed
the bus signal of a EC captured by an osciloscope. The Time-Triggered phase was placed
in the end of EC that is programmed to start in accordance as TM content, in this case of
specific sample it was programmed to hold five Time-Triggered message. For the better
bandwidth use the the message 6 and 7 are added on Time-Triggered phase only in park-
ing situations through admission control process. The Figure 4 (b) showed the measured

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200
 1300
 1400
 1500
 1600
 1700
 1800
 1900

-28 -24 -20 -16 -12 -8 -4 0 4 8 12 16 20 24 28

N
um

be
r

of
 o

cc
ur

re
nc

es

Jitter (µs)

Figure 4. (a) Bus signal image of a Elementary cycle and (b) jitter distribution of
the TM message.

jitter of TM. It is inherent of the RTAI scheduler that active periodically the master dis-
patcher task, thus being very difficult to improve it. Although it is a excellent result for
this intention.
The TM jitter and its interrupt handler jitter has a direct impact on Time-Triggered mes-
sages because the TM decoding that is intrinsically in them. The Figure 5 (a) and (b)
showed the jitter distribution of messages 4 and 7, respectively.
The Figure 6 (a) and (b) showed the jitter distribution of messages 1 and 3, respectively.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200
 1300
 1400
 1500
 1600
 1700
 1800
 1900

-28 -24 -20 -16 -12 -8 -4 0 4 8 12 16 20 24 28

N
um

be
r

of
 o

cc
ur

re
nc

es

Jitter (µs)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

-28 -24 -20 -16 -12 -8 -4 0 4 8 12 16 20 24 28

N
um

be
r

of
 o

cc
ur

re
nc

es

Jitter (µs)

Figure 5. (a) Jitter distribution of a synchronous message as 100ms and (b) as
200ms of period .

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

-28 -24 -20 -16 -12 -8 -4 0 4 8 12 16 20 24 28

N
um

be
r

of
 o

cc
ur

re
nc

es

Jitter (µs)

 0

 100

 200

 300

 400

 500

 600

 700

-28 -24 -20 -16 -12 -8 -4 0 4 8 12 16 20 24 28

N
um

be
r

of
 o

cc
ur

re
nc

es

Jitter (µs)

Figure 6. Jitter distribution of the first (a) and last (b) synchronous message as
5ms of period.

The bit stuffing mechanism of CAN protocol contributes for this small jitter increase.
This measured jitters is insufficient for to cause a performance degradation on the control
system presented in this paper.

7. Conclusions and Future Work

The FTT-CAN implementation may be directly affected by RTOS in use. However, is
very important the choice of a suitable RTOS with hard precision on the scheduler and
interrupt handler. The RTAI/µClinux has presented excellent performance for hard Real-
Time application. Analyses of a method for admission control of messages on the system
in run-time phase and analyses of differents approaches about holistic scheduling are
some of future works.
The use of open source solution provides some benefits which would not have using
proprietary solutions. The support is found on dedicated discussion lists and its members
may to contribute actively in the evolution of project offering improvements in its source
code. And this way contributing in the intellectual growth of everyone. This is open
source.

8. Acknowledgments

This work has been partly supported by the Brazilian research agency CNPq and
FreeScale Semiconductor of Brazil.

References

Almeida, L., Pedreiras, P., and Fonseca, J. (2002). The ftt-can protocol: Why and how.
IEEE Transactions on Industrial Electronics, 49(6):1189– 1201.

Andersson, M. P. and Lindskov, J.-H. (2003).Real-Time Linux in an Embedded Environ-
ment - A Port and Evaluation of RTAI on the CRIS Architecture. Master of Science
Thesis, Lund Institute of Technology, Sweden.

Consortium, F. (Copyright 2004).FlexRay Communications System Protocol Specifica-
tion Version 2.0. FlexRay Consortium.

Dionne, J. and Durrant, M. (2002). Embedded linux/microcontroller project.

Kopetz, H. (1997). Real-Time Systems - Design Principles for Distributed Embedded
Applications. Kluwer Academic Publishers.

Mantegazza, P. (2001). The diapm rtai project homepage.

TTA-Group (2003).Time-Triggered Protocol TTP/C High-Level Specification Document
Protocol Version 1.1. TTA-Group.

Yodaiken, V. and Barabanov, M. (2003). A real-time linux.

