
Integrating Open Source Tools for Developing Embedded
Linux Applications

Raul Fernandes Herbster1, Hyggo Almeida1, Angelo Perkusich1, Dalton Guerrero1 ∗

1Embedded Systems and Pervasive Computing Laboratory
Electrical Engineering and Informatics Center

Federal University of Campina Grande

{raul,dalton}@dsc.ufcg.edu.br,{hyggo,perkusic}@dee.ufcg.edu.br

Abstract. The development of embedded Linux applications have been sup-
ported by several open source tools. In order to make the programming activity
less complex and more productive, such tools should be easy to install, configure
and use. However, using the available open source tools, developers still have
to understand and use different kinds of user interfaces and environments. Time
and effort are spent on configuration issues rather than on programming. In this
paper we present how to integrate open source development tools for program-
ming embedded Linux applications. We introduce an Eclipse plug-in to support
the development of embedded Linux applications using a single and integrated
environment.

1. Introduction
In the last years the Linux operating system has been successfully applied to develop
many different embedded devices [Geer 2004]. In fact as reported in [Lafer 2006], Linux
was the most cited operating system for current embedded systems development. The
widespread interest and special attention generated by Linux success on several embed-
ded applications has encouraged researches and development projects focused on em-
bedded Linux. More and more solutions based on embedded Linux are being required,
specially open source solutions [Wong 2006], and hence there is an increasing need for
programmers for the embedded Linux.

Besides programmers, good tools for supporting the programming activity are also
essential. Diversity and quality of tools are important factors that make the technology
largely adopted by the community of programmers. There is a huge variety of techniques
and tools for developing embedded Linux applications, supporting different phases of the
development process. Each one has its own user interface and needs different kinds of
input and produces outputs in special ways. The correct management of such tools makes
the programming activity harder and more complex.

To solve this problem, the integration of programming tools is critical. Integrating
environments which were not designed to communicate with other external tools demands
extra work, because no interface is defined for such an integration. Another issue is the
lack of documentation – several open source tools do not have good documentation. This
makes necessary to understand their source code to discover how to integrate them.

In this paper we present how to integrate two open source tools - Eclipse
CDT [Eclipse.org 2006a] and Scratchbox [Scratchbox 2006] - for programming embed-
ded Linux applications. We introduce an Eclipse plug-in to support the development of

∗The authors would like to thank Nokia do Brasil and Instituto Nokia de Tecnologia for the support to
develop this work.

such applications using an integrated environment, reducing time and increasing produc-
tivity in embedded Linux applications development.

The remainder of this paper is organized as follows: Section 2. describes some
features of Embedded Linux; Section 3. presents the most used development tools for
embedded Linux applications; our approach for integrating such tools are described in
Section 4.; and conclusions are presented in Section 5.

2. Embedded Linux
An embedded Linux system is an embedded system based on the Linux kernel, that uses or
not any specific library [Yahgmour 2003]. The recent success of Linux based applications
and solutions have been attracted users, media and business interest. Linux is becoming
the preferred operating systems for embedded applications, placed everywhere in our
lives, from mobile phones to medical equipment [Yahgmour 2003, Lafer 2006].

In the year 2000, the Embedded Systems Programming magazine conducted a
survey including 547 subscribers. The result was that 38% of readers were considering
Linux as the operating system for their design [Yahgmour 2003]. According to Venture
Development Corporation, the embedded Linux market will top $100 million this year
[DeviceLinux.com 2006].

There are several reasons for using Linux over other embedded operating systems
[Yahgmour 2003]:

• Quality and reliability of code - Many programmers agree that Linux kernel and
most projects used in a Linux system have quality and reliability of code. From
these aspects, one can expect some characteristics that make the code easier to fix,
extend and maintain.

• Availability of code - Linux source code and build tools are available without ac-
cess restrictions. The advantages are the possibility of fixing the code without
exterior help and the capability to understand its operation by observing its exe-
cution.

• Hardware support - Linux supports different kinds of hardware platforms and de-
vices. Many drivers are created and maintained by the Linux community itself.

• Cost - The open source license of Linux reduces its cost.
• Available tools - There is a huge variety of tools for Linux. One can find easily a

free application that is looking for.
• Community support - This is perhaps the strongest feature of Linux. Forums

and mail lists are the best place to find this community support, and the level
of expertise found there surpasses the expensive support offered by proprietary
operating systems vendors.

• Communication protocol and software standards - Linux provides broad commu-
nication protocols and software support. Integrating Linux with others systems
over a network is not a difficult task.

3. Development Tools
Embedded systems have some constraints that must be carefully analyzed while design-
ing applications for them [Yahgmour 2003]: memory usage and disposal, power con-
sumption, cost, restricted user interfaces and mobility issues. These aspects point out
that developing applications for embedded systems require more attention than designing
applications for desktop.

The development processes for embedded applications must take these aspects
into account. An extra time is spent for designing these applications, because the inception

phase must be carefully analyzed and described [Wolf 2001]. Besides, as programmers of
other platforms, embedded Linux developers need development tools, like compilers, text
editors, linkers, debuggers, and integrated development environments to improve produc-
tivity [Yahgmour 2003]. The major difference between conventional Linux development
is that embedded Linux is based on cross-platform development. That is, embedded sys-
tems tools run on a host development platform and the developed applications run on
another one, namely the target platform.

3.1. Cross-Platform Development Toolchain
Compiling the code on a host machine with larger computational resources is faster than
in the target embedded system platform. Usually, the target platform has more restricted
computational resources, and, generally, less computing power than a desktop or a work-
station machine. The objective of a building process is to generate an executable that
runs on the target platform. The standard approach is to develop the software on an en-
vironment specially configured for building such software for a specific target device.
Everything programmers need, like compilers, libraries and binary utilities are specific
for the target they work with.

A cross-platform development toolchain is a collection of essential tools and li-
braries for building specific-platform applications. The host machine, generally a desk-
top, builds the application to a target device - an ARM [ARM 2005] based platform, for
example.

3.1.1. Standalone Toolchain Build

Building a cross-platform development toolchain from scratch is, in most cases, a painful
work. It takes long hours for compiling and performing all the process. In what follows we
describe concisely describe the overall build process. Details related to the cross-platform
development toolchain is can be found in [Yahgmour 2003] and [Hollabaugh 2003]. To
build a basic toolchain, the following GNU [GNU 2006] tools are used:

binutils Binaries utilities [Binutils 2006], which is a collection of binary tools, including
linkers, assemblers and much more.

GCC GNU Compiler Collection [GCC 2005], that includes front-ends for C, C++,
Objective-C, Fortran, Java, and Ada, as well as libraries for these languages.

glic The GNU C Library [glibc 2006]. It is used as the C library in the GNU system and
most systems with the Linux kernel. C library is important because it defines the
“system calls” and other basic facilities such malloc, scanf, exit and others.
Other C library variants can be also used [uClibc 2006].

GDB The GNU debugger [GDB 2005] is used to debug executables. It is the most used
GDB for C/C++ programmers and it has useful features, like memory and registers
display, trace, and others.

There are also patches for specific platforms, such as ARM based ones, that must
be also installed. To start with, one has to select the component versions that will be
used. To work properly, it is important to choose the correct version of each component,
that is, select binutils version, a gcc version and a glibc version. It is recommended
to use old and stable packages, because some new packages require other packages to
provide certain capabilities. In [Kegel 2006] and [Yahgmour 2003], the programmer can
find information on stable functional packages version combination.

With the appropriate tools already in place, the programmer must build
the toolchain. This process takes hours because all the source of components

must be compiled for the target platform chosen. Buildroot [Buildroot 2006] and
Crosstool [Kegel 2006] are tools for helping to build toolchains by downloading sources
and applying patches.

After building all the components, the programmer has a fully functional cross-
development toolchain, which can be used as a native GNU toolchain, with a small dif-
ference: the target name is added to every command that is used. For example, instead of
using gcc for the target, the programmer will invoke arm-linux-gcc for ARM target.

3.1.2. Using Ready-To-Use Cross-Platform Development Toolchain

In fact, creating a customized cross-platform development toolchain to build applications
for specific targets is a complex task, which requires time and patience to configure all
components. It is important to understand the dependencies between the different pack-
ages and a lot of time is spent for configuring the environment that will be used.

Unfortunately, in order to change to another target, the programmer has to per-
form all tasks again. For example, if the application must run on an ARM platform, the
cross-platform development toolchain must be built for ARM as target. Then, if the tar-
get platform is changed to Sparc [ULTRASparc 2005], the cross-platform has to be built
again.

There are ready-to-use cross-platform development toolchains that are already
built for specific platforms, saving precious time and effort of the programmer. Some
of this pre-compiled toolchains can be found at [CodeSourcery 2006].

3.2. Scratchbox Toolchain
Scratchbox [Scratchbox 2006] is a compilation and configuration environment for build-
ing Linux software and entire Linux distributions [Mankinen and Rahkonen 2004]. Cre-
ated by Movial [Movial 2006] as an open source project, Scratchbox offers to developers
an environment that works and looks like the target environment even before the target
environment becomes available [Mankinen and Rahkonen 2004].

Scratchbox project has a lot of tools for cross-compiling software for a large num-
ber of architectures, like ARM and Sparc. For using Scratchbox, the programmer must
define the TARGET with the aid of a wizard, without worrying about the correct versions
of binaries, C libraries, compiler and other elements to be installed. Thus, the code is
compiled using GCC commands as whether the code were being compiled to a Linux
desktop machine.

Since design, coding, testing, integrating and documentation can be performed
on the Scratchbox, the developers can start working even if the platform is not finished
yet. They must have only the specific target configured properly. The lack of a physical
platform does not affect the development task.

3.3. Eclipse C/C++ Development Tools
Eclipse [Eclipse.org 2006b] is an extensible platform for tool development and integration
used by millions of developers around the world [Clayberg and Rubel 2004]. Through
the Eclipse platform, the integration of tools from several different vendors is possible on
Linux, Windows and other operating systems.

Eclipse Platform has mechanisms that allows developers to extend its function-
alities, adding new tools to the platform. These mechanisms, called plug-ins, allow de-
velopers programming in different languages like Java, C/C++ and Phyton. The C/C++

Development Tools (CDT) [Eclipse.org 2006a] provide support for Linux platform and
for GNU tools (GCC, GDB, Make), but it is also possible to use versions of GCC for
other platforms, like MingW for Windows [MingW 2006].

For programming, CDT offers useful features, like syntax highlighting, search
engine, error parsing, wizards for creating projects, source and head files and much more.
The debugger environment, which runs over GDB, displays variables, memory map, and
registers. It is also possible to debug multi-threaded programs. Eclipse Platform, and
hence CDT, offers several extension points so that developers can develop plug-ins to add
new functionalities to the CDT environment.

4. Integrating Scratchbox and CDT

Using both Scratchbox and CDT can reduce configuration, programming and compilation
time. However, productivity problems remain critical. It occurs because, in the case of
embedded systems, CDT supports only the codification activity. Compilation, debugging,
and execution activity must be performed using Scratchbox. The developer spends a large
amount of time switching environments, using the output from CDT as an input for the
Scratchbox. Besides, programmers have also to correctly manage and configure each tool.

In order to provide an integrated environment for developing embedded Linux ap-
plications we propose the ESBox Plug-in for the Eclipse platform. ESBox is an extension
of the CDT plug-in, strongly integrated with Scratchbox, reducing time and effort for
configuration and increasing the productivity on Linux-based embedded systems devel-
opment.

4.1. ESBox Plug-in Architecture

The integration of Scratchbox and CDT occurs by means of service calls. In a nutshell,
Scratchbox is a command line environment and the service calls are also made through
command line. To perform the invocation of Scratchbox services from CDT, Scratchbox
commands are wrapped into processes instances and all communication with Scratchbox
are made through these processes. Input, output and error streams of such processes are
redirected to GUI elements, such as lists and errors messages. CDT features, like wizards
and resources property pages, are implemented via extension points mechanisms.

ESbox architecture is detailed in Figure 1. Both Eclipse and Scratchbox run over
Linux. ESbox has two modules: the framework, which calls Scratchbox services and
manipulate the streams of the processes properly; the plug-in, which changes data with
framework, requests Scratchbox services, displays information from Scratchbox to the
programmer and implements features for helping editing, launching and debugging. Tools
which use Scratchbox, like Maemo [Maemo.org 2006], can also be plugged into ESbox.

Figure 1. ESbox Plug-in Architecture

Large experience in Scratchbox is not essential. The programmer has to know
only some basic concepts, because ESbox offers a middle layer between Scratchbox and
the programmer. ESbox supplies the need of use command line and archaic text editors.

The version 1.0 of ESbox was developed for Eclipse 3.1, CDT 3.0 and Linux
(Ubuntu [Ubuntu 2006] is the used distribution) and supports Scratchbox versions 0.9.8 or
1.x.x. ESbox is licensed under GNU General Public License (GPL). It includes a C/C++
code editor that provides features like code completion, search engine, error parsing and
syntax highlighting; a front-end GDB debugger; remote debug on the target; a launcher;
a Scratchbox target manager; and wizards to create managed or standard C/C++ projects
inside Scratchbox.

4.2. ESBox Functional Scenario
First of all, the developer has to define the Scratchbox target to be used. The management
of targets are performed at ESbox environment, using GUI wizards to create and delete
targets, if it is necessary. ESbox offers to programmers different kinds of project: standard
or managed. Standards projects are built using makefiles written by the programmer,
whereas automatic generated makefiles are used to compile the managed projects.

The developer uses a wizard to create and configure projects, defining error parsers
and default make commands. After creating the project, the programmer can create re-
sources, like source files and paths, header files and makefiles. Useful features for coding
and a rich GUI to manage the project are available for the programmers.

After editing the source code, the project can be built automatically or by using
the makefile previously written. Errors or warnings generated during compiling process
are marked at source code, so the programmer can identify where the problems are. The
binary output is displayed at the project structure view and it can be launched using some
clicks of the mouse. Finally, after launching the executable, the console displays the
application input and output. All this process occurs under a GUI environment and the
programmers does not have to interact directly with Scratchbox.

If the programmer wants to debug the application, instead of launching the binary,
the programmer just choices “debug application” and debug perspective, with a set of
views that displays registers, memory map, state of variables and stack and more are
available to the programmer for debugging step-by-step. In Figure 2 a screen shot of the
tool running is shown. A more detailed description of the ESBox project can be found at
http://tesla.dee.ufcg.edu.br/˜omapsdk/.

5. Conclusion
In most cases programming Embedded Linux applications using open source tools can
be a painful work. This is mainly because such tools have complex installation and con-
figuration processes. Nowadays, tools such as Scratchbox can simplify the programming
activity by providing mechanisms for easily configuring and emulating the target plat-
form. On the other hand, Eclipse based programming tools, such as CDT plug-in, have
been largely used.

However, there is no automatic integration between such tools. And, therefore, the
developer must spend a large amount of time switching environments, using the output
from CDT as an input for the Scratchbox. Moreover, configuration and management of
such tools require a lot of time and effort.

In this paper we presented the integration of two open source tools, Eclipse CDT
and Scratchbox, for programming embedded Linux applications. We introduced the im-

Figure 2. Screen Shot of the Tool Running

plementation of a plug-in called ESBox, which extends the CDT functionality to integrate
it with Scratchbox, reducing configuration time and thus increasing productivity.

Major problems faced during the development were related to the lack of docu-
mentation for extending the Eclipse CDT plug-in. There are no helps, tutorials, articles or
books explaining how to extend CDT functionalities. The ESBox development team had
to understand the source code to implement the CDT extensions.

Today, some students of Embedded Systems and Pervasive Computing Labora-
tory are using ESbox for developing an API over Flute [Flute 2006] and all reports gen-
erated by this team are analyzed to verify which features need to be implemented at next
releases of ESbox. As future works we plan to implement productivity and quality plug-
ins, like a design checker and a C/C++ unit test tool. A plug-in for Maemo platform
[Maemo.org 2006] is also a future feature of ESbox.

References
ARM (2005). ARM Processors. http://www.arm.com. Last access on 12/28/2005.

Binutils (2006). The gnu binutils. http://www.gnu.org/software/binutils/. Last access on
02/17/2006.

Buildroot (2006). Buildroot. http://buildroot.uclibc.org/. Last access on 02/14/2006.

Clayberg, E. and Rubel, D. (2004). Eclipse: Building Commercial-Quality Plug-ins. Addison
Wesley, Boston, USA.

CodeSourcery (2006). GNU Toolchain for ARM Processors.
http://www.codesourcery.com/gnu toolchains/arm/. Last access on 02/16/2006.

DeviceLinux.com (2006). Embedded Linux market growing significantly, research firm says.
http://www.linux.org. Last access on 01/30/2006.

Eclipse.org (2006a). Eclipse CDT. http://www.eclipse.org/cdt. Last access on 02/14/2006.

Eclipse.org (2006b). Eclipse Platform. http://www.eclipse.org. Last access on 02/14/2006.

Flute (2006). FLUTE - File Delivery over Unidirectional Transport. http://rfc3926.x42.com/. Last
access on 03/17/2006.

GCC (2005). GCC - GNU Compiler Collection. http://gcc.gnu.org. Last access on 12/22/2005.

GDB (2005). The GNU Project Debugger. http://www.gnu.org/software/gdb. Last access on
12/22/2005.

Geer, D. (2004). Survey: Embedded linux ahead of the pack. Distributed Systems Online, 5(10).

glibc (2006). Gnu c library. http://www.gnu.org/software/libc/. Last access on 02/17/2006.

GNU (2006). The GNU Operating System. http://www.gnu.org/. Last access on 02/16/2006.

Hollabaugh, C. (2003). Embedded Linux: Hardware, Software, and Interfacing. Addison Wesley.

Kegel (2006). Crosstool. http://www.kegel.com/crosstool/. Last access on 02/14/2006.

Lafer, C. (2006). Open source in the embedded market: Linux and much more. Electronic
Design, http://www.elecdesign.com/Articles/Index.cfm?AD=1&ArticleID=11733, Last access
02/27/2006, (ED Online ID #11733).

Maemo.org (2006). Maemo Platform. http://www.maemo.org. Last access on 02/14/2006.

Mankinen, V. and Rahkonen, V. (2004). Cross-Compiling Tutorial with Scratchbox.
http://www.scratchbox.org/documentation/docbook/tutorial.html.

MingW (2006). MingW - Minimalist GNU for Windows . http://www.mingw.org. Last access on
02/16/2006.

Movial (2006). Movial. http://www.movial.fi. Last access on 02/18/2006.

Scratchbox (2006). Scratchbox Toolchain. http://www.scratchbox.org. Last access on 02/14/2006.

Ubuntu (2006). Ubuntu Linux Distribution. http://www.ubuntu.com/. Last access on 01/03/2006.

uClibc (2006). uClibc. http://www.uclibc.org/. Last access on 02/18/2006.

ULTRASparc (2005). ULTRASparc Processors. http://www.sun.com/processors. Last access on
12/28/2005.

Wolf, W. (2001). Computer as Components: principles of embedded computing system design.
Morgan Kaufmann, San Francisco, California, USA.

Wong, W. (2006). Embedded software: An open-source territory. Electronic De-
sign, http://www.elecdesign.com/Articles/Index.cfm?AD=1&ArticleID=11733, Last access
02/27/2006, (ED Online ID #11735).

Yahgmour, K. (2003). Building Embedded Linux Systems. O’Reilly, California, USA.

