
Case Studies in Linux Ports to Embedded Platforms

Claudio Matsuoka, Gustavo Boiko, Thiago Galesi

Mandriva Embedded Systems Lab
Curitiba, Brazil

Abstract. This paper details the technical issues found in late 2005 when port-
ing Linux to two different embedded platforms, namely an XScale-based rugged
handheld device for industrial and military applications (previously running
Windows CE) and a PowerPC-based board used in a private branch exchange
(PBX) system. Both ports are based on kernel 2.6, and the latter makes use of
real-time capabilities provided by RTAI.

1. Linux on embedded systems
Electronic devices, gadgets, handhelds, media systems, appliances, industrial controllers,
communication systems, mobile phones and the like are all targets in one of the fastest
growing areas for Linux usage expansion. Powering computers from large NUMA-based
systems to small PDAs, sometimes hidden in everyday use equipment such as set-top
boxes or digital camcorders, the flexibility, features and mindshare offered by Linux is
not going unnoticed by industrial and consumer electronicsmanufacturers.

From the runtime environment standpoint, Linux on embeddedsystems is quite
different from workstation or server-oriented distributions everybody is used to see.
Scarce CPU and storage resources make embedded Linux systems, more often than not,
just Linux and not GNU/Linux. Typical systems boot off a few megabytes of flash mem-
ory and run on small, cheap and power-efficient SoCs designedaround an ARM, MIPS
or PowerPC core.

Unlike mainstream IA32 or x8664, one will found that support for many architec-
tures and sub-architectures typically used in embedded systems are currently under heavy
development. Also unlike general-purpose PC-class machines, most embedded devices
are unique in their design, making port to each device a non-trivial task. Each ARM-
based PDA, for instance, has different peculiarities and that reflects in different drivers,
addresses and strategies adopted in the process of making Linux run in these devices.

2. The XScale port

2.1. Solution description
In late 2004 the authors were approached by an European company specialized in
industrial-class solutions to have Linux and a user interface running on a rugged handheld
device for industrial and military applications. The device is IP64 and MIL-STD-810F
compliant and built around an ARM-based XScale PXA263 SoC. Subsystems of interest
include a cardbus controller, 802.11b/g networking using aCompactFlash card, MMC/SD
support, touch-sensitive display and Bluetooth. The ARM architecture [Seal 2000] is
widely used in this class of device due to low power consumption, high code density and
large availability of system-on-chip designs [Furber 2000].

Linux was chosen as an alternative to Windows CE to allow greater flexibility and
customization to specific needs. Current shipments of this product use plain WinCE 4.20.



2.2. Reverse engineering

The port project was commissioned by a systems integrator — not the device manufac-
turer. Documentation on parts and components are reasonably complete and were sup-
plied as published by their respective manufacturers. Documentation on the device archi-
tecture and hardware details, however, was not available, resulting on a non-neglectable
amount of time spent on guessing and reverse engineering. The latter was accomplished
using tools such as HaRET (described in Section 2.3) and examining portions of device
drivers and other source code supplied by the integrator.

Without a clear description of the hardware details, we decided to port and stabi-
lize the Linux kernel before installing the final bootloader, learning as much as possible
about the device in the process. Keeping WinCE on the device during the development
also allowed us to compare support to different subsystems as development takes place.
Again, HaRET was used to boot Linux kernels from SD or CF cards, allowing us to
develop Linux while keeping WinCE installed on the same device.

2.3. HaRET

HaRET (a short forHandheld Revese Engineering Tool) is an Open Source utility written
by Andrew Zabolotny. HaRET is targeted at ARM-based systemsrunning Windows CE,
and, among its many capabilities, can:

• detect and provide general hardware information
• read and write data to/from virtual and physical addresses
• access general-purpose I/O registers (GPIOs)
• execute user-defined scripts
• load and boot the Linux kernel

The ability to load, prepare and execute Linux from within Windows CE makes
HaRET an invaluable tool to test experimental kernels. Thisis especially important when
the bootloader already installed on the device (usually Eboot) is not able to boot from the
network or from a serial port, not enough information about the system architecture is
avaliable to port a bootloader such as U-Boot, or when the system doesn’t have any serial
or ethernet ports.

2.4. The kernel bundle

The process of booting a Linux kernel from within an operating system with virtual mem-
ory and memory protection involves a series of operations that must be well-understood
in order to trace the first stages of Linux execution. The concept, although simple, has a
non-trivial implementation that depends heavily on the system architecture and the host
OS. To see how this works, let’s start with a description of how the kernel is actually
executed.

Linux boots by execution of its startup entry point at
<arch>/kernel/head.S — assuming that the kernel is uncompressed and
properly located in memory. The entire process, however, starts earlier when the
bootloader prepares the execution environment, loads the compressed kernel and initial
RAM disk images into RAM and transfer execution to the kerneldecompressor1. ARM

1Execution-in-place (XIP) systems act differently and willnot be detailed in this paper.



Linux bootloaders makes use of a binary object called the “kernel bundle”, comprised of
a series of parameter tags, the compressed kernel image and the compressed initial RAM
disk, aligned in 4KB boundaries.

Kernel InitrdTags

4KB (ksize + 4095)&~4095 (isize + 4095)&~4095

Figure 1. The kernel bundle

Tags are a mechanism used to pass parameters to the kernel, ina sequence of
structures starting with 32-bit fields containing the size and type of each tag. Parameters
that can be passed through tags include the address of the initial RAM disk, the kernel
command line and the board serial number. The tag list must start withATAG CORE and
end withATAG NONE. Table 1 shows the tag list built by HaRET when building its kernel
bundle.

Table 1. Example of tags in a kernel bundle
size 00000005
tag ATAG CORE
flags 00000000
pagesize 00001000
rootdev 00000000
size xxxxxxxx
tag ATAG CMDLINE
cmdline root=/dev/ram rw ...
size 00000004
tag ATAG MEM
start a0000000
size 04000000
size 00000000
tag ATAG NONE

2.5. Memory management issues

With the kernel bundle loaded in RAM, we cannot simply execute it from within Windows
CE. First, WinCE has other tasks being executed, and then it is improperly located in the
system memory. The bundle cannot be transferred by HaRET to its final destination,
(address 0xa0008000, start of physical memory)2 without overwriting WinCE’s MMU
tables. A different strategy must be adopted.

To overcome the memory management problems, HaRET allocates a block of
physically contiguous memory in high RAM. This memory is used to hold code — the
preloader — that relocates the kernel bundle according to a private “page map” table,
and the table itself. WinCE switches to single-task mode andcontrol is transferred to the
preloader, which takes care of moving the kernel and initrd to their proper locations at the
start of memory. This layout is shown in Figure 2.

2In the XScale case, other ARM-based systems may use different addresses.



���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

Tags Linux kernel Root filesystem (initrd) Preloader Page table

malloc() malloc()

Kernel Bundle 1:1 map

0x1000 ksize isize 0x100

Figure 2. Memory map before running the preloader

An additional memory management trick must be performed in order to disable
the memory management unitwhile the code is still running. To perform this critical step,
HaRET instructs the MMU to create a 1:1 mapping for the preloader area in the first-level
descriptor table, thus making virtual and physical addressing equal and allowing code to
continue execution when the MMU is switched off. The preloader then copies the kernel
bundle to the start of physical memory, overwriting WinCE.

2.6. Kernel decompression

After executing the preloader, the kernel bundle is in placeaccord-
ing to Figure 3 and execution is passed to the kernel decompressor at
arch/arm/boot/compressed/head.S. A magic number at the start of the
code can be checked before jumping to verify if the preloadersucceeded in placing the
compressed kernel in the correct location.

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

Preloader Page tableTags zImage Initrd

4MB4KB

0x100 0x8000 0x408000

Figure 3. Memory map immediately after running the preloader

After the initial setup done in assembly, actual kernel decompression is handled
by decompress kernel() in arch/arm/boot/compressed/misc.c, which
— if you system has an appropriate console device — prints thewell-known “Uncom-
pressing Linux...” message. Only after decompression control is finally transferred to the
Linux kernel.

2.7. Boot process debugging

It is worth of note that extensive debugging was necessary inthe boot processbefore the
initialization of the framebuffer device, and there was no serial port available for a serial
console. All tracing was made through a status LED and raw access to the display con-
troller, which was converted into a simple scrollable terminal. Special care was necessary
in using the appropriate address translations accessing the display memory before and
after the MMU was re-enabled by Linux.

A tracing mechanism is clearly needed — when a boot attempt fail one cannot tell
if the kernel is not being loaded, relocated, decompressed,locked up in a driver initial-
ization or if it is only the framebuffer device that is not working correctly. This port had



problems at least in loading, relocation, UART driver initialization causing a system lock,
and framebuffer initialization.

2.8. Device drivers

Availability of device drivers of interest prompted the useof the latest 2.6 series kernel at
the time of the port. While the port efforted started with Linux 2.6.12, it was soon updated
to 2.6.14.2 to take advantage of new code introduced in the later kernel.

The initial port effort included the development of the following device drivers:

• Board support
• Improvements in the Epson S1D13806 framebuffer
• Wolfson WC97 touch panel support (through AC97)
• Keypad support via AT keyboard emulation
• PCMCIA controller and CF slot support

The framebuffer driver was later improved to implement rotation to portrait mode
and 2D acceleration.

Controllers for many important subsystems, such as UARTs, Bluetooth and I2C
are integrated in the SoC itself, and are well-supported by drivers already present in the
Linux kernel. Drivers for other devices are still not implmented, such as the Philips
ISP1161 USB HCD (support exists in Linux 2.6.14 but it is not functional), AC97-based
PCM audio and different sensors.

2.9. Runtime environment and applications

The user-level runtime environment for Linux on the device was built around uClibc and
Busybox, with a minimal Bourne shell and configuration toolsfor Bluetooth, Wi-Fi and
PCMCIA sockets. The framebuffer console is used mostly for debugging purposes, and
there are no plans to include it in the final product. Remote access during development is
provided by telnet over the wireless link, as Bluetooth bandwidth is too limited even for
character-based interactive sessions.

The root filesystem is read-only and resides in an Ext2 image loaded as an initial
RAM disk. Due to HaRET constraints, the RAM disk size is limited to around 5MB
compressed, or around 10MB uncompressed depending on the filesystem contents. This
same strategy can be used for the final system when booting from flash, with the rest of
the NAND flash memory accessible as a memory technology device (MTD) using JFFS2.

During development, large applications reside on either SDor CF cards mounted
at boot time. Test applications included QT/Embedded basedGUIs (QTopia and Opie),
SDL games and stress test and diagnostic programs. The most notable absence is a mod-
ern, freely available web browser for QTopia or Opie. At the time the port was made, only
a very old version of Konqueror embedded was available. Commercial alternatives such
as Opera are considered for production.

2.10. Sending patches upstream

Patches written for this project will be made available to upstream maintainers using a Git
repository after minimum stability criteria are met in tests conducted by the integrator and
third-party developers. Further development is scheduledto happen in the second phase
of the project in early 2006.



3. The PowerQUICC-based system

3.1. System overview

The implementation of Linux for a PowerQUICC based PBX boardand the port of a
time-critical application previously running on “bare metal” (i.e. without an underlying
OS) represents a complete departure from the scenario builtin the XScale device port. In
this case, Linux enters as a provider of networking capabilities with ethernet drivers and
a robust TCP/IP stack.

The PowerQUICC communications processors are a series of system-on-chip de-
signs built by Freescale Semiconductor around a PowerPC core targeted at networking
and communications applications, containing, among othersubsystems, baud rate genera-
tors, a communications processor module (CPM), PCMCIA controller, as well as support
for several other common interfaces. The system also includes components relating to
telco infrastructure interfacing and a dial-up serial modem for remote management.

Architectural details of the hardware cannot be disclosed at this time, per request
of the device manufacturer. Further information will be made available when the equip-
ment reaches production status.

3.2. Licensing issues

Due to the nature of the application, portions of the code responsible for direct hardware
access were moved to kernel drivers in the port process. Drivers covered by a proprietary
license were built as modules and not statically linked to the kernel to prevent licensing
problems.

3.3. Existing application and board support

The original application did not run under a OS. Several facilites such as real-time man-
agement, interrupt handling and task scheduling were done by the application. No mem-
ory protection scheme was implemented; the system used 1:1 memory mapping. As such,
hardware access were done directly by the aplication.

Linux support for the platform already existed at the time the port was initiated.
However, it was very out-of-date and mostly nonfunctional.With this port, maintenance
was resumed, allowing the developers to work closely to the new maintainer and stream-
line patches directly.

3.4. Real-time systems

Due to the time sensitive nature of the protocols concerningthis board the system needs to
have time warranties for certain operations. Some common situations require the applica-
tion to act in timeframes of tens of milliseconds. In addition, the application’s pre-existing
real-time handling structures required itself to be calledperiodically every 10ms.

In this case, the RTAI/Fusion system was used to provide real-time capabilities to
the system. RTAI/Fusion is composed by a series of patches tothe Linux kernel, as well
as kernel modules and userspace libraries. It adds hard real-time scheduling to userspace
applications using a simple and flexible API, including API “skins” to ease the transition
from other RTOS to Linux.



One of its most important features allows for real-time codeto be executed within
user-level context. Because of licensing reasons and the application’s complexity, it would
not be possible to put all time sensitive code in kernel context — this feature alone was
decisive for the project viability.

RTAI has proven itself during the project. No considerable RTAI overhead has
been detected during development (considering the 10ms periodic task calling). In one of
the drivers needed for this project, (one of the trickiest project requirements) ,using RTAI
interrupt handling system has allowed interrupts to be handled in hundreds of microsec-
onds (as opposed to tens of milliseconds using conventionalLinux interrupt handling
systems).

3.5. Device drivers
The use of RTAI in this project has posed an important problemconcerning device drivers:
it is not possible to make system calls during execution of time critical code in userspace.
Any code that makes a syscall is subject to rescheduling (hence, taking RTAI’s control
from the thread and removing any real time warranties). RTAIhandles this by either
blocking (that is, signaling the application) whenever a syscall is made, or by switching
to a soft real-time mode. None of those options were acceptable for this project. There-
fore, communication between the driver and the applicationwas done via shared memory
regions, organized as lockless message rings. Messages from the application to the driver
are written to the ring, which is checked periodically by a periodic timer in the driver.
Messages to the application are also checked by the application’s 10ms timer.

3.6. Memory technology devices
The system uses flash memory for system/application, bootloader and configuration. The
original system did not use any file system; “files” were assigned to different flash blocks,
and data was read directly from flash, since it is directly mapped into the address space.
MTD partitions are used to create separate areas for the bootloader (U-Boot), system
(which includes the kernel and root filesystem) and application data.

3.7. Runtime environment
The same approach used in the ARM PDA was used in the PowerPC board: the root
filesystem resides on a compressed, ready-only Ext2 system loaded as a initial RAM disk.
Configuration data is stored in a special MTD partition. During the initial development,
configuration data was being accessed by means of mapping configuration files in memory
(since for development purposes the root filesystem for thisboard was being mounted via
NFS). However, this approach does not work for flash filesystems such as JFFS2. The
initial solution adopted was to use a Minix partition mounted over a MTD block. Several
problems were encountered with this method, mainly that thesystem required a complete
shutdown sequence to properly store data without corruption.

Later, the usage of memory mapped access to files was replacedby conventional
accesses (read and write) so the configuration filesystem could be switched to JFFS2. This
approach has payed off: JFFS2 has demonstrated in tests its extreme resilience against
data corruption (even on extreme cases) as well as its compression capabilities. The only
drawback noted is that JFFS2 (as a fully flash aware file system) reserves some flash
blocks for garbage collecting purposes. This poses a problem when only a few blocks are
available (even though compression will most likely make upfor the lost space).



4. Conclusions

The two different ports presented in this work illustrate the uniqueness of Linux imple-
mentations in embedded platforms. Unless the targets are very similar in architecture,
physical interface and application, each port will requiredifferent patches, subsystems
and solutions custom-tailored for that specific device. Unlike desktop PCs, embedded
platforms cannot have an “one size fits all” binary distribution for general usage.

The current status of ARM support in the Linux kernel make it relatively easy
to port the system to a new ARM-based machine, especially PDAs. Previous work on
a system based on the Samsuung S3C2440 SoC has shown that basic board support is
simple to implement, and it is possible to have the new systembooting from HaRET in
a few days of work. XScale PXA255 and PXA263 devices are usually similar to the
Lubbock evaluation system from Intel, making the existing code a good place to start.

Experience has shown us that a combination of a revision control system such
as Subversion [Collins-Sussman et al. 2004] and a patch management system such as
Quilt [Grünbacher 2005] or Git could be the best approach toallow agile and organized
development and easy submission of patches to upstream maintainers. Git is especially
well-suited for parallel development and kernel patch management: it is adopted by up-
stream maintainers, deals with multiple branches and alloweasy patchset sharing among
developers.

The approach used by HaRET to boot Linux from WindowsCE on ARMsystems
makes it an essential tool when porting the kernel to an ARM-based systems without serial
or ethernet ports and already run WinCE. This could be extended to other architectures
supported by WinCE such as SH3/SH4, i386 and MIPS. It also becomes important when
a small amount of reverse engineering is required, which is almost always the case when
you’re not in direct contact with the engineers who designedthe unit you’re working on.

Test strategies and existing drivers against the real hardware when planning the
port is essential to prevent frustrations caused by existing but nonfunctional code, limited
support to features required by the project or last-minute infrastructure changes. Addi-
tionaly, real-time applications ported from bare metal to an RTOS are generally very hard
to trace and debug, especially under high CPU usage.

Applications targeted at embedded systems with raw flash storage, it is important
to keep in mind that MTD and JFFS2, due to peculiarities in theway flash memory is
accessed, don’t support writable mmap access. Applications should use normal read and
write access instead in order to be able to use JFFS2. Regularfile systems created on
writable mtdblock devices result in lack of reliability andmay lead to early wearing of
certain regions of memory. MTD targeted filesystems should be used whenever possible.

References

Collins-Sussman, B., Fitzpatrick, B. W., and Pilato, C. M. (2004). Version Control with
Subversion. O’Reilly, 1st edition.

Furber, S. (2000).ARM System-on-Chip Architecture. Addison-Wesley, 2nd edition.

Grünbacher, A. (2005).How to Survive with Many Patches. SuSE Labs.

Seal, D. (2000).ARM Architecture Reference Manual. Addison-Wesley, 2nd edition.


