Case Studiesin Linux Portsto Embedded Platfor ms
Claudio Matsuoka, Gustavo Boiko, Thiago Galesi

Mandriva Embedded Systems Lab
Curitiba, Brazil

Abstract. This paper details the technical issues found in late 2005 when port-
ing Linux to two different embedded platforms, namely an XScale-based rugged
handheld device for industrial and military applications (previously running
Windows CE) and a Power PC-based board used in a private branch exchange
(PBX) system. Both ports are based on kernel 2.6, and the latter makes use of
real-time capabilities provided by RTAI.

1. Linux on embedded systems

Electronic devices, gadgets, handhelds, media systemiampes, industrial controllers,
communication systems, mobile phones and the like arergikts in one of the fastest
growing areas for Linux usage expansion. Powering comgtitem large NUMA-based

systems to small PDAs, sometimes hidden in everyday usemgut such as set-top
boxes or digital camcorders, the flexibility, features anddshare offered by Linux is

not going unnoticed by industrial and consumer electromasufacturers.

From the runtime environment standpoint, Linux on embedtedems is quite
different from workstation or server-oriented distrilmuts everybody is used to see.
Scarce CPU and storage resources make embedded Linux systene often than not,
just Linux and not GNU/Linux. Typical systems boot off a fevegabytes of flash mem-
ory and run on small, cheap and power-efficient SoCs desigrathd an ARM, MIPS
or PowerPC core.

Unlike mainstream 1A32 or x84, one will found that support for many architec-
tures and sub-architectures typically used in embeddddragsare currently under heavy
development. Also unlike general-purpose PC-class mashimost embedded devices
are unique in their design, making port to each device a neiattask. Each ARM-
based PDA, for instance, has different peculiarities aad téflects in different drivers,
addresses and strategies adopted in the process of makimg dun in these devices.

2. The XScale port

2.1. Solution description

In late 2004 the authors were approached by an European ocgmgpeecialized in
industrial-class solutions to have Linux and a user interfainning on a rugged handheld
device for industrial and military applications. The devis IP64 and MIL-STD-810F
compliant and built around an ARM-based XScale PXA263 Sasgstems of interest
include a cardbus controller, 802.11b/g networking usi@@epactFlash card, MMC/SD
support, touch-sensitive display and Bluetooth. The ARNh#ecture [Seal 2000] is
widely used in this class of device due to low power consuomptihigh code density and
large availability of system-on-chip designs [Furber 2000

Linux was chosen as an alternative to Windows CE to allowtgrdkexibility and
customization to specific needs. Current shipments of tlidyxct use plain WinCE 4.20.



2.2. Reverseengineering

The port project was commissioned by a systems integratootthe device manufac-
turer. Documentation on parts and components are reagoocaivplete and were sup-
plied as published by their respective manufacturers. Basuation on the device archi-
tecture and hardware details, however, was not availagéelting on a non-neglectable
amount of time spent on guessing and reverse engineerirglaiter was accomplished
using tools such as HaRET (described in Section 2.3) and iexagrportions of device
drivers and other source code supplied by the integrator.

Without a clear description of the hardware details, wedkstito port and stabi-
lize the Linux kernel before installing the final bootloadearning as much as possible
about the device in the process. Keeping WIinCE on the devidaglthe development
also allowed us to compare support to different subsystenteeelopment takes place.
Again, HaRET was used to boot Linux kernels from SD or CF caallswing us to
develop Linux while keeping WIinCE installed on the same devi

2.3. HaRET

HaRET (a short foHandheld Revese Engineering Tool) is an Open Source utility written
by Andrew Zabolotny. HaRET is targeted at ARM-based systemsing Windows CE,
and, among its many capabilities, can:

detect and provide general hardware information

read and write data to/from virtual and physical addresses
access general-purpose I/O registers (GPIOs)

execute user-defined scripts

load and boot the Linux kernel

The ability to load, prepare and execute Linux from withinndows CE makes
HaRET an invaluable tool to test experimental kernels. ®especially important when
the bootloader already installed on the device (usuallydBlis not able to boot from the
network or from a serial port, not enough information abdw $ystem architecture is
avaliable to port a bootloader such as U-Boot, or when theesydoesn’t have any serial
or ethernet ports.

2.4. Thekernd bundle

The process of booting a Linux kernel from within an opemgggstem with virtual mem-
ory and memory protection involves a series of operatioasriust be well-understood
in order to trace the first stages of Linux execution. The ephclthough simple, has a
non-trivial implementation that depends heavily on thaeysarchitecture and the host
OS. To see how this works, let’'s start with a description oivhibe kernel is actually
executed.

Linux boots by execution of its startup entry point at
<ar ch>/ ker nel / head. S — assuming that the kernel is uncompressed and
properly located in memory. The entire process, howeventsstearlier when the
bootloader prepares the execution environment, loadsahmiessed kernel and initial
RAM disk images into RAM and transfer execution to the keletompressér ARM

1Execution-in-place (XIP) systems act differently and wibt be detailed in this paper.



Linux bootloaders makes use of a binary object called thertidebundle”, comprised of
a series of parameter tags, the compressed kernel imaghendrpressed initial RAM
disk, aligned in 4KB boundaries.

Tags Kernel Initrd

~—4KB —>|~— (ksize + 4095)&~4095 { (isize + 4095)&~4095

Figure 1. The kernel bundle

Tags are a mechanism used to pass parameters to the keraesetnuence of
structures starting with 32-bit fields containing the sind type of each tag. Parameters
that can be passed through tags include the address of tiad RAM disk, the kernel
command line and the board serial number. The tag list mastwith ATAG CORE and
end withATAG_NONE. Table 1 shows the tag list built by HaRET when building itenie
bundle.

Table 1. Example of tags in a kernel bundle
size 00000005

tag ATAG CORE
flags 00000000
pagesize 00001000
rootdev | 00000000

size XX XXX XXX

tag ATAG.CVDLI NE
cmdline | root =/ dev/ramrw ...
size 00000004

tag ATAG.VEM
start a0000000

size 04000000

size 00000000

tag ATAG.NONE

2.5. Memory management issues

With the kernel bundle loaded in RAM, we cannot simply exedufrom within Windows
CE. First, WinCE has other tasks being executed, and thenritproperly located in the
system memory. The bundle cannot be transferred by HaRET tiinal destination,
(address 0xa0008000, start of physical menfowithout overwriting WinCE’s MMU
tables. A different strategy must be adopted.

To overcome the memory management problems, HaRET albeatdock of
physically contiguous memory in high RAM. This memory is dise hold code — the
preloader — that relocates the kernel bundle according tovatp “page map” table,
and the table itself. WinCE switches to single-task modecamdrol is transferred to the
preloader, which takes care of moving the kernel and ind@théir proper locations at the
start of memory. This layout is shown in Figure 2.

2In the XScale case, other ARM-based systems may use diffadeinesses.



mal | oc() mal | oc()

Kernel Bundle 1:1 map

Tags Linux kernel Root filesystem (initrd) Preloader Page tab%

0x1000 ksize isize 0x100

Figure 2. Memory map before running the preloader

An additional memory management trick must be performeddeioto disable
the memory management umihile the codeis still running. To perform this critical step,
HaRET instructs the MMU to create a 1:1 mapping for the pradoarea in the first-level
descriptor table, thus making virtual and physical addngssqual and allowing code to
continue execution when the MMU is switched off. The prelatien copies the kernel
bundle to the start of physical memory, overwriting WinCE.

2.6. Kernel decompression

After executing the preloader, the kernel bundle is in plae@ecord-
ing to Figure 3 and execution is passed to the kernel decasqre at
arch/ armi boot / conpr essed/ head. S. A magic number at the start of the
code can be checked before jumping to verify if the preloatdeceeded in placing the
compressed kernel in the correct location.

0x100 0x8000 0x408000

Tags zlmage Initrd Preloader Page table

4KB |~——ave ———+

Figure 3. Memory map immediately after running the preloader

After the initial setup done in assembly, actual kernel degeession is handled
by deconpr ess_kernel () inarch/ arnf boot/ conpressed/ m sc. ¢, which
— if you system has an appropriate console device — printsvéeleknown “Uncom-
pressing Linux...” message. Only after decompressiorrobistfinally transferred to the
Linux kernel.

2.7. Boot process debugging

It is worth of note that extensive debugging was necessattyeitboot procesbkefore the
initialization of the framebuffer device, and there was eda port available for a serial
console. All tracing was made through a status LED and rawsacto the display con-
troller, which was converted into a simple scrollable terahi Special care was necessary
in using the appropriate address translations accessandisiplay memory before and
after the MMU was re-enabled by Linux.

A tracing mechanism is clearly needed — when a boot attenitrfa cannot tell
if the kernel is not being loaded, relocated, decompredselled up in a driver initial-
ization or if it is only the framebuffer device that is not Worg correctly. This port had



problems at least in loading, relocation, UART driver iglization causing a system lock,
and framebuffer initialization.

2.8. Devicedrivers

Availability of device drivers of interest prompted the wsehe latest 2.6 series kernel at
the time of the port. While the port efforted started withlx®.6.12, it was soon updated
to 2.6.14.2 to take advantage of new code introduced in tee karnel.

The initial port effort included the development of the &olling device drivers:

Board support

Improvements in the Epson S1D13806 framebuffer
Wolfson WC97 touch panel support (through AC97)
Keypad support via AT keyboard emulation
PCMCIA controller and CF slot support

The framebuffer driver was later improved to implementtiotato portrait mode
and 2D acceleration.

Controllers for many important subsystems, such as UARTi®tBoth and 12C
are integrated in the SoC itself, and are well-supportedrivers already present in the
Linux kernel. Drivers for other devices are still not implmed, such as the Philips
ISP1161 USB HCD (support exists in Linux 2.6.14 but it is ngtidtional), AC97-based
PCM audio and different sensors.

2.9. Runtime environment and applications

The user-level runtime environment for Linux on the devi@swuilt around uClibc and
Busybox, with a minimal Bourne shell and configuration tdolsBluetooth, Wi-Fi and
PCMCIA sockets. The framebuffer console is used mostly &ugiging purposes, and
there are no plans to include it in the final product. Remotess during development is
provided by telnet over the wireless link, as Bluetooth baidth is too limited even for
character-based interactive sessions.

The root filesystem is read-only and resides in an Ext2 imagedd as an initial
RAM disk. Due to HaRET constraints, the RAM disk size is liegitto around 5MB
compressed, or around 10MB uncompressed depending ondbystiém contents. This
same strategy can be used for the final system when bootingffash, with the rest of
the NAND flash memory accessible as a memory technology eéma D) using JFFS2.

During development, large applications reside on eitheloS8DF cards mounted
at boot time. Test applications included QT/Embedded b&igl$ (QTopia and Opie),
SDL games and stress test and diagnostic programs. The otabl@absence is a mod-
ern, freely available web browser for QTopia or Opie. At tingetthe port was made, only
a very old version of Konqueror embedded was available. Ceruial alternatives such
as Opera are considered for production.

2.10. Sending patches upstream

Patches written for this project will be made available tettgam maintainers using a Git
repository after minimum stability criteria are met in tesbnducted by the integrator and
third-party developers. Further development is schediddthppen in the second phase
of the project in early 2006.



3. The Power QUICC-based system

3.1. System overview

The implementation of Linux for a PowerQUICC based PBX boand the port of a

time-critical application previously running on “bare rait(i.e. without an underlying

OS) represents a complete departure from the scenaridrbthié XScale device port. In
this case, Linux enters as a provider of networking capadslivith ethernet drivers and
a robust TCP/IP stack.

The PowerQUICC communications processors are a seriestansyon-chip de-
signs built by Freescale Semiconductor around a PowerP€taggeted at networking
and communications applications, containing, among athlesystems, baud rate genera-
tors, a communications processor module (CPM), PCMCIArotliet, as well as support
for several other common interfaces. The system also iesle@mponents relating to
telco infrastructure interfacing and a dial-up serial mader remote management.

Architectural details of the hardware cannot be disclogedistime, per request
of the device manufacturer. Further information will be madailable when the equip-
ment reaches production status.

3.2. Licensing issues

Due to the nature of the application, portions of the codpamsible for direct hardware
access were moved to kernel drivers in the port processeBraovered by a proprietary
license were built as modules and not statically linked tokérnel to prevent licensing
problems.

3.3. Existing application and board support

The original application did not run under a OS. Severalitasi such as real-time man-
agement, interrupt handling and task scheduling were dgrleedbapplication. No mem-
ory protection scheme was implemented; the system useddmiony mapping. As such,
hardware access were done directly by the aplication.

Linux support for the platform already existed at the time flort was initiated.
However, it was very out-of-date and mostly nonfunctionalth this port, maintenance
was resumed, allowing the developers to work closely to #ve maintainer and stream-
line patches directly.

3.4. Real-time systems

Due to the time sensitive nature of the protocols concerttiisgooard the system needs to
have time warranties for certain operations. Some comntoatgins require the applica-
tion to act in timeframes of tens of milliseconds. In additithe application’s pre-existing
real-time handling structures required itself to be cafledodically every 10ms.

In this case, the RTAI/Fusion system was used to providetiea capabilities to
the system. RTAI/Fusion is composed by a series of patchitbinux kernel, as well
as kernel modules and userspace libraries. It adds hartimeakcheduling to userspace
applications using a simple and flexible API, including ABkins” to ease the transition
from other RTOS to Linux.



One of its most important features allows for real-time ctudiee executed within
user-level context. Because of licensing reasons and fiieapon’s complexity, it would
not be possible to put all time sensitive code in kernel cdnte this feature alone was
decisive for the project viability.

RTAI has proven itself during the project. No considerabl@Roverhead has
been detected during development (considering the 10nsdietask calling). In one of
the drivers needed for this project, (one of the trickiesigxt requirements) ,using RTAI
interrupt handling system has allowed interrupts to be tehith hundreds of microsec-
onds (as opposed to tens of milliseconds using conventionalx interrupt handling
systems).

3.5. Devicedrivers

The use of RTAI in this project has posed an important prolenterning device drivers:
it is not possible to make system calls during executionroétcritical code in userspace.
Any code that makes a syscall is subject to reschedulingcéhdaking RTAI's control
from the thread and removing any real time warranties). Riamdles this by either
blocking (that is, signaling the application) whenever scajl is made, or by switching
to a soft real-time mode. None of those options were acclptabthis project. There-
fore, communication between the driver and the applicatias done via shared memory
regions, organized as lockless message rings. Message$hfecapplication to the driver
are written to the ring, which is checked periodically by aigdic timer in the driver.
Messages to the application are also checked by the appiisatOms timer.

3.6. Memory technology devices

The system uses flash memory for system/application, baeloand configuration. The
original system did not use any file system; “files” were assdjto different flash blocks,
and data was read directly from flash, since it is directly pgspinto the address space.
MTD partitions are used to create separate areas for thdoldetr (U-Boot), system
(which includes the kernel and root filesystem) and appboadata.

3.7. Runtime environment

The same approach used in the ARM PDA was used in the PowerB@:bthe root
filesystem resides on a compressed, ready-only Ext2 systaed as a initial RAM disk.
Configuration data is stored in a special MTD partition. Dgrthe initial development,
configuration data was being accessed by means of mappifigwation files in memory
(since for development purposes the root filesystem fotibesd was being mounted via
NFS). However, this approach does not work for flash filesgstsuch as JFFS2. The
initial solution adopted was to use a Minix partition mouwhter a MTD block. Several
problems were encountered with this method, mainly thasylséem required a complete
shutdown sequence to properly store data without cormptio

Later, the usage of memory mapped access to files was refddgiaazhventional
accesses (read and write) so the configuration filesysteld bewswitched to JFFS2. This
approach has payed off: JFFS2 has demonstrated in testarigge resilience against
data corruption (even on extreme cases) as well as its casiprecapabilities. The only
drawback noted is that JFFS2 (as a fully flash aware file systeserves some flash
blocks for garbage collecting purposes. This poses a probleen only a few blocks are
available (even though compression will most likely makdarghe lost space).



4. Conclusions

The two different ports presented in this work illustrate tiniqueness of Linux imple-
mentations in embedded platforms. Unless the targets ayesumilar in architecture,
physical interface and application, each port will requdiferent patches, subsystems
and solutions custom-tailored for that specific device. ikéntlesktop PCs, embedded
platforms cannot have an “one size fits all” binary distribatfor general usage.

The current status of ARM support in the Linux kernel makeelatively easy
to port the system to a new ARM-based machine, especiallys?DXevious work on
a system based on the Samsuung S3C2440 SoC has shown tlabdmasi support is
simple to implement, and it is possible to have the new sy$teating from HaRET in
a few days of work. XScale PXA255 and PXA263 devices are Wssahilar to the
Lubbock evaluation system from Intel, making the existindea good place to start.

Experience has shown us that a combination of a revisiorr@osystem such
as Subversion [Collins-Sussman et al. 2004] and a patch geament system such as
Quilt [Grunbacher 2005] or Git could be the best approacélltmw agile and organized
development and easy submission of patches to upstreantamairs. Git is especially
well-suited for parallel development and kernel patch ngeanagent: it is adopted by up-
stream maintainers, deals with multiple branches and adasy patchset sharing among
developers.

The approach used by HaRET to boot Linux from WindowsCE on AsYstems
makes it an essential tool when porting the kernel to an ARiglell systems without serial
or ethernet ports and already run WinCE. This could be exernd other architectures
supported by WIinCE such as SH3/SH4, i386 and MIPS. It alsorbes important when
a small amount of reverse engineering is required, whichmngst always the case when
you’re not in direct contact with the engineers who desigiedunit you're working on.

Test strategies and existing drivers against the real renelwhen planning the
port is essential to prevent frustrations caused by exjstint nonfunctional code, limited
support to features required by the project or last-minobestructure changes. Addi-
tionaly, real-time applications ported from bare metaliid=a3 OS are generally very hard
to trace and debug, especially under high CPU usage.

Applications targeted at embedded systems with raw flagagdoit is important
to keep in mind that MTD and JFFS2, due to peculiarities invilag flash memory is
accessed, don’t support writable mmap access. Applicasbould use normal read and
write access instead in order to be able to use JFFS2. Rdgalaystems created on
writable mtdblock devices result in lack of reliability anthy lead to early wearing of
certain regions of memory. MTD targeted filesystems shoaldded whenever possible.

References

Collins-Sussman, B., Fitzpatrick, B. W., and Pilato, C. HI0@4). \ersion Control with
Subversion. O’Reilly, 1st edition.

Furber, S. (2000)ARM System-on-Chip Architecture. Addison-Wesley, 2nd edition.
Grunbacher, A. (2005How to Survive with Many Patches. SUSE Labs.
Seal, D. (2000)ARM Architecture Reference Manual. Addison-Wesley, 2nd edition.



